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  Pref ace   

 This book is written for an audience that is very diverse in its  learning   styles, and 
my objective is to expose the readers to different and unique ways the basics of 
 wave   motion can be studied in an academic setting. Why such a title? There have 
been many books written about waves, and quite a few are suffi ciently successful in 
covering and teaching a wide range of topics to provide  exposure   to the  physics   of 
wave  motion  . There are books about waves in general and specifi cally about  light   
and about  sound   that convey the basic ideas that all waves follow. 

 Because most of these books emphasize the coverage of topics from an authori-
tative perspective, they have neglected the student perspective. 

 By student perspective I mean one where the ability to apply the ideas is insepa-
rable from being exposed to their basic defi nitions. From my experiences as a  phys-
ics   student and instructor, the traditional presentation has been that the  didactic   
approach often neglects the context. 

 In the science education literature researchers have known for some time that 
from the earliest experiences, humans tend to be better observers when they are 
interested. Correspondingly, it seems logical to suppose that a learner being pro-
vided with a context stands a better chance of understanding the  material  , rather 
than being introduced to it without one. 

 Understanding a concept involves much more than simply memorizing and 
regurgitating the information. The  application   of concepts places a learner in a situ-
ation where more is required than a simple recollection of information. To this 
extent, the role of inquiry must be actively incorporated into instructional materials, 
if one hopes to appeal to that natural need of a context. 

  Inquiry  -based instruction needs to place the learner in a  position   of relative igno-
rance, although some guidance needs to be provided; the reason for this guidance is 
to allow the learner to utilize whatever background information he or she possesses. 
There are many views on the importance of inquiry, some claiming that it doesn’t 
show substantial gains in the  learning   of diffi cult concepts. Many studies, however, 
have shown a clear advantage for nontraditional students to be engaged in inquiry- 
based instruction. 
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 Consider an example using light and sound as sources of information to explore 
and understand the world. Generally speaking,  events   do not become experiences 
until there is awareness, and the experiences become more meaningful when there 
is  refl ection   upon them. Suppose you are seated outdoors and hear a bird singing by 
emitting short bursts of a high- pitched   sound and you want to locate the bird; there 
will be an  interaction   between the waves that make up what you see and what you 
hear. Both types of waves undergo similar  processes   as they get to you, for the most 
part; however, you will not experience them all due to various properties, such as 
the  length   of the waves, how they propagate, what other objects do to these waves 
when struck by them, and so on. 

 If you were an ornithologist, you most likely would know what type of bird it is, 
since the example is about hearing it but not seeing it. Additionally, you could prob-
ably tell whether it is a female or male, how old it is, its size, etc. However, if you 
were not an expert on bird watching, you would need to rely on the sound to guide 
your  vision   if you hope to see it. There are some things you could ascertain about 
the bird from prior experience, such as its size and even its type. For one thing you 
can deduce that if the sound is high pitched, the bird is not a crow, which would also 
make it easier to spot. Based on this, you conclude that the bird is small. If there are 
several trees having lots of branches and leaves, this makes the task more diffi cult 
since you seem to hear the sound coming from various directions. As you continue 
to listen, you begin to concentrate on an area where you think the sound is coming 
from based on what you hear; however, if the bird were to stop singing, you would 
be extremely hard pressed to fi nd it. 

 You could probably come up with a better example than this to provide a setting; 
what I have done is to create a scenario and provide an experience. I believe that is 
the essence of the term  inquiry  , the provision of opportunities to experience  phe-
nomena   and to explore them based on what one knows beforehand. 

 The way in which this book deals with the incorporation of inquiry is by its lack 
of distinction between  theory   and practice. As soon as a concept or an idea is intro-
duced, an attempt is made to provide opportunities for exploration. Whether the task 
is one of concept development or  quantitative   determinations, to provide opportuni-
ties to explore lies at the heart of inquiry-based instruction. 

 Additionally, the text incorporates laboratory experiences into the introduction 
of the content; while this has been done before, the types of experiences are both 
physical and virtual. There is an undeniable benefi t to being able to manipulate 
variables in a setting that does not require extensive preparation and where the data 
obtained can be processed in real time. 

 There are many tasks involving  simulations  , predominantly using one of the very 
best sources publicly available ( PhET Interactive Simulations ,  University of 
Colorado ,    http://phet.colorado.edu     ) .  

 Some of these virtual experiments can be done as  extensions   to the class discus-
sions; in other words, these activities can be assigned as homework projects, thus 
enhancing the opportunities for  inquiry   and investigation they make available. 
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 The simulations have been structured to allow the user to exercise both pace and 
variable control; studies have shown that simulations can often overwhelm students 
with low prior knowledge, due to quick and continuous changes that can overload 
working memory. Variable control can be particularly helpful in the development of 
exploration and hypotheses testing. 

 At the same time, the need for physicality is not neglected.  Physics   is and hope-
fully will always remain an  experimental   science; despite great advances in techno-
logically rich environments, there is a basic need for physicality. The role of 
 kinesthetic   tasks is an area of considerable interest due to the fi ndings concerning 
student  retention   and understanding of the  material  . To this extent there are nearly 
20 experimental tasks included that require physical manipulation of variables. 

 I have endeavored to demonstrate that the approach taken in this book will ben-
efi t all readers, particularly those among you that tend to be intimidated by  scientifi c   
concepts. I don’t know what the readers’ experiences have been, but mine have 
consistently shown me that there are many more students from the sciences who are 
interested in the arts and the humanities, than it is the other way around. I sincerely 
hope that with this book I can help change that! 

 I believe instructors cannot afford to neglect their responsibility to the audience 
(students); there are simply too many great and interesting aspects of waves that all 
students should be allowed to understand, since they will enrich their understanding 
of their preferred areas of study. 

 Instructors can decide on how to cover the  material   given their individual 
 circumstances. The book has been primarily, although not exclusively designed for 
non-science majors, and students must possess some algebraic profi ciency. If the 
instructor fi nds that students struggle with  quantitative   information, my recommen-
dation is to concentrate on those chapters that don’t require a signifi cant amount of 
 mathematical   detail. However, don’t neglect the value of exploratory tasks found in 
such chapters, since they may be more palatable and instructive for those students 
without requiring mathematical expediency. 

 There is no particular sequence needed to expose students to the many interest-
ing aspects and  applications   of waves. Therefore, if some chapters must be omitted 
to facilitate student comprehension that may be hindered by a lack of algebraic 
profi ciency, this would not constitute an obstacle for students to develop a basic 
understanding of wave  motion  . 

 Based on my experience with a class of non-science majors that needed a science 
course to fulfi ll a general education or distribution requirement, I decided to cover 
only the fi rst six chapters. 

 When teaching the properties of light or those of sound separately, one can fi nd 
 applications   in all chapters, and so it is a  matter   of choosing the relevant aspects to 
the topics that are found throughout the text. Given this scenario, it is quite feasible 
to cover at least the fi rst nine chapters in a given semester. 

 Instructors can also choose chapters that they consider appropriate for their particu-
lar student audience. The fi rst nine chapters are undoubtedly driven by content- specifi c 
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properties of waves, while the last three are concerned mainly with a variety of 
applications that utilize many of these concepts and properties. Therefore, instructors 
can provide students with an overview of all the topics, by concentrating on the 
exploratory tasks exclusively. The narrative sections that often precede these tasks can 
be assigned as part of the background knowledge to successfully carry out the tasks. 

 Figures 2.1, 2.3, 3.4, 3.9–11, 4.1, 4.4, 4.6–11, 6.1, 7.8, 8.3, and 9.1 were con-
structed using Physical Science Images & Art (Qwizdom Inc.) used with permission. 

 Credits: Fig. 10.2-credit: Wikimedia Commons, Fig. 10.10 and that of the 
Exploratory Task on p. 196-courtesy of Imgur.  

  Long Island, NY, USA     Fernando     Espinoza     
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    Chapter 1   
 Introduction to Wave Phenomena       

              Why Is the Study of Waves Important? 

 Most information human  beings   are exposed to in our  interaction   with the world is 
in the form of  waves  . Our senses convey to us an enormous amount of information 
about the natural world, both externally and internally, that is predominantly pro-
cessed as properties of waves. From sights and  sounds   to  pressure   variations 
involved in touch, as well as olfactory and taste  sensations   that exhibit patterns of 
change characteristic of alternating  conditions  . 

 In addition, many occurrences and  events   in a wide variety of experiences that 
are presented to us as information can be categorized as  cycles   or recurring instances 
of properties that can be understood in terms of those of waves. An understanding 
of wave  motion   can help us to describe  phenomena   that apparently don’t have any-
thing in common, in a way that enhances and promotes general knowledge. 

 To begin to understand waves, we need to realize that the condition of most physi-
cal systems that use the  energy   available for action as  work   is a state of  equilibrium   
(static or at rest); however, dynamic equilibrium (involving motion) can also be seen 
in the context of variation as long as there is a balance in the changes, such as the 
 relationship   between the job market and unemployment. Conservation (something 
remaining constant) and  symmetry   (something remaining identical) are other proper-
ties of systems, provided these are closed ones. In such cases something remains 
unchanged, while repetitive changes can take place with reference to that condition. 

 The transfer of information, in general, rests on an understanding of the concept 
of a   signal   , where its properties are better aligned with those of a traveling wave 
than with those of a moving object. Consider our responses to  signals   representing 
electrical impulses that generate the many body  sensations   we instinctively recog-
nize and react to in various ways. The strength of those signals changes according 
to a property of waves, the   amplitude   ; it determines how much  energy   is  transmitted  . 
It would be very odd to regard changes such as the intensifi cation or diminishing of 
those  signals   in terms of the properties of  particles  . Nevertheless, in the very strange 
world of subatomic or quantum phenomena, that appears to be the case, although 
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whether such properties are associated with particles or waves depends on the  mea-
surement  . Consequently, at the level of  perception   the strength of signals is pre-
dominantly understood in terms of wave properties. 

 Another important concept that shares features with those of waves but not 
particles is that of a   fi eld   ; an example of such a property would be that of being 
infi nitely extended. A fi eld can be effectively used to describe something that varies 
from place to place. Consequently, using concepts derived from wave phenomena 
can help us to understand properties of  nature   that range from the infi nitesimally 
small to the largest scales in the  observable   universe. Consider one of the most 
 bizarre   ideas in modern  physics  , the concept of  entanglement  , where a subatomic 
particle can communicate with another  instantaneously   even if separated by 
enormous  distances  . This would be extremely diffi cult to understand, even concep-
tualize in ways other than using the properties of ideas such as fi elds. 

 A particular source of diffi culty in understanding many properties of wave phe-
nomena, even at the everyday level of experience has to do with their  speed   of 
 transmission   through  space   or through various  material   substances. Human reaction 
times are categorized according to how long it takes for us to respond to various 
 stimuli  . For example, it is known that the average response time for visual stimuli is 
about 0.25 s, for audio stimuli it is about 0.17 s, and for touch it is about 0.15 s. 

 Conceptual Task 
 Consider the role that human reaction time plays in driving a motor vehicle. 
Generally speaking, this activity that has become necessary for many people 
requires a high level of attention to a number of  processes   and  events  , with 
some of them being unpredictable. It is not a good idea to “tailgate” or to 
drive too close behind other vehicles, especially if one is traveling at fairly 
high speeds. Suppose you are driving at approximately 35 mi/h on a road with 
some traffi c, and the driver ahead of you moving on another lane in the same 
direction suddenly moves onto your lane. 

 We assume that you will have  space   to maneuver and this example of 
course entails some other assumptions, among them the speeds of the vehicles 
in question. We shall assume that they are constant; If the other driver is trav-
eling with higher speed than your own, you will have more time to react and 
possibly avoid a  collision  . This is a result of the difference in speeds where 
the other vehicle will cover a longer  distance   than yours. The situation also 
entails that the only time available is 0.25 s, the average human reaction time. 
Use the formula Distance ( D ) = (speed) (time). We also need to use some con-
version factors; 1 mile ≈ 5240 ft, 1 h = 3600 s.

    (A)    If the other vehicle is moving with the same speed as your own (it should be 
obvious that if the other vehicle’s speed is lower than yours, the situation is 
more critical still), what should be the shortest distance in feet between the 
 vehicles   to avoid a collision?   

(continued)

1 Introduction to Wave Phenomena



3

   At the same time the calculated speeds for muscle  movements   vary from the fast-
est  signals   of 268 miles/h or about 120 m/s, to those for touch of about 80 m/s, and 
fi nally to the slowest ones for pain  sensation   of about 0.60 m/s. 

 Exercise 
 Convert the numbers 120 m/s and 0.60 m/s into feet/s (1 m = 3.3 ft). 

   (B)    Suppose now that you are traveling at 65 miles/h on a highway fl owing 
with the traffi c and the vehicle ahead of you on the same lane is 20 ft 
away. Would you have enough time to react if the other vehicle suddenly 
came to a stop?   

   (C)    Texting while driving is something one should never do! Suppose you 
receive a text and your  phone   is on the passenger seat; if it takes you 
about 1 s to look at it, how far will your vehicle travel in each of the 
above cases?     

  Using the fi gures above, along with the  relationship   between  distance  , speed, and 
time given by  d  =  v t , one can estimate the reaction time for the fastest muscle  signals   
and what this means in terms of mental awareness of certain body  movements  . 

 Assume the distance traveled to the brain is roughly the  length      of an arm and 
the neck to be about 1 m, the time for  signals   to be recorded is 
 t = d / v t s® = =1 119 0 0084m m s/ / .    which is roughly 8.5 ms. 

 Now comparing this time to the reaction time for the sense of touch (150 ms), we 
can see that it takes a lot longer to feel touch than to be aware of one’s own arms. 
To experience this, close your eyes and wave your arms; you undoubtedly know 
where your arms are at all times, since the  sensation   is almost  instantaneous  . We can 
also see why it takes some time to react to a painful sensation, since those are the 
slowest  signals  . The  anatomical   features of our sensory organs can also be understood 
in terms of the range of  sensation   and  perception  , as functions of the  frequencies   
(a property to be formally introduced in the next chapter) of those waves we are 
exposed to, particularly in the case of  vision   and sound. 

 At the heart of wave phenomena lies the concept of a pattern. Patterns of change 
can be steady or   trends   , or changes that occur in   cycles   , and changes that are irregular 
or  chaotic ; sometimes a system may exhibit all three types. For instance, the daily 
weather isn’t always predictable, but the climate of a region often is. Individual 
human behavior in isolation may be unpredictable, but we can become predictable 
when acting as parts of large groups. 

 Predictability is one of the most useful properties of behavior described as wave 
phenomena, since the perceived patterns of repetition can enable us to determine 
future conditions, based on those previously or currently observed. Consider the 
examples shown in Figs.  1.1  and  1.2  of data collected that can be represented as 
wave phenomena, despite initially not appearing to display such behavior.

Why Is the Study of Waves Important?
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  Fig. 1.1     Measurements      of indoor air pollution in terms of particulate  matter   ( microscopic   dust 
 particles  ) can be analyzed as waves where the amounts change throughout the  year  . The pattern 
shows repeated values that can be used to draw conclusions and make  predictions   about the data         
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    As seen in these examples data collected as numbers or other quantities can be 
represented as waves. We are daily exposed to information about many aspects of 
life that may not initially appear to form  trends  ; however, if there is a way to display 
such information as waves, it could become much more signifi cant by exhibiting 
features like: (a) repeated changes between a  maximum   and a  minimum  , (b) time 
when values repeat, (c)  length   or  duration   of changes, and (d) past and future 
changes. 

 Conceptual Challenge 
 When we use the terms “crime wave” or “heat wave,” what do we mean to 
express? 

Fig. 1.1 (continued)

Why Is the Study of Waves Important?
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  There are of course many other examples of  phenomena   that can be represented 
as exhibiting wave-like behavior. Among these are  biorhythms  ,  motions   produced 
by sports fans in stadiums, weather patterns,  earthquake   waves, and other types of 
natural disasters like a  tsunami  . There are other well-known phenomena that are 
increasingly being understood and explained as consequences of wave properties; 
examples of these are  photosynthesis   by plants, bird  navigation  , and chemical 
exchanges such as those involved in the  perception   of  smell  . 

 The essence of all waves is a  vibration   or  oscillation  ; however, a signifi cant con-
sideration in our study of wave phenomena is the fact that whenever we speak of 
waves we are referring to the  motions   of individual  particles   or  material   objects, 
whose vibrations produce such waves. Therefore, one might ask if waves really 
exist as separate entities or as  constructs  . A construct is essentially something not 
directly observable, but a mental product based on properties exhibited by  observ-
able   objects. An example is the concept of  density  , which is expressed as the  ratio   
of the amount of  matter   contained in an object, and the  volume   of  space   it occupies; 
the latter two are  experimentally   determined but the former one, the density isn’t 
directly measurable but instead defi ned in terms of these. 

  Fig. 1.2    Number of  applications      to a graduate program expressed as a percentage based on the 
fi rst group of applicants. The  pattern  shows that the applications appear to change in a  cycle   and 
 predictions   can be made about likely future changes       

 Conceptual Task 
 The  electron   is usually taken at the level of perception to be the  fundamental   unit 
of  charge  , and it can also be considered a human construct. It was discovered in 
1897, although it was possible to describe the electrical properties of matter 
before its discovery using other concepts. Did electrons exist before 1897? 

   Wave  propagation   in a  material   or  medium   depends on the medium’s response to 
a  disturbance  ; the  propagation   characteristics depend only on the medium, and not 
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on the  nature   of the disturbance, contrary to what many students believe based on 
everyday  experiences  . This example illustrates the approach to be followed in this 
text; it is imperative that we use the familiarity of concepts associated with waves 
so that students can use them to make sense of the many abstract properties that 
waves have and that are often diffi cult to comprehend. To this end,  experimental   
tasks are designed to be exploratory rather than confi rmatory. 

 The emphasis is on  inquiry   as the  didactic   approach to the presentation of the 
material. According to  learning    theory   there is an  inverse    relationship   between the 
degree of  abstraction   and  retention   of the material. In other words, material pre-
sented in the traditional way that  textbooks   have, with text, pictures, and other more 
recent ancillary methods that emphasize generalized phenomena, is retained very 
little by the learner. Information presented as dramatized/contrived, and purposeful 
(real life) situations based on learners’ prior experiences on the other hand, results 
in the greatest amount of  retention   for individuals. It also effectively addresses 
 misconceptions  , which are often impediments to  learning   new  material  .  

    Theoretical Background 

 In order to properly understand waves a number of terms need to be introduced 
since these constitute the terminology necessary to describe all waves, and their 
precise use allows one to effectively apply them in the many situations and tasks 
where such understanding informs our knowledge of  nature  . 

 As will be formally introduced in Chap.   2     many of these terms have a  quantita-
tive   defi nition or  representation  , besides a  qualitative   aspect that facilitates the ways 
in which we can describe them. Our objective is to be both accurate and precise in 
our treatment of wave phenomena.  Accuracy   can be defi ned as the degree or mea-
sure of agreement between the description (both  qualitative   and  quantitative  ), and 
the properties being described.  Precision   is defi ned as the consistency with which 
we use such descriptions. Let’s use an example to illustrate both terms. 

 Suppose we wanted to hit a  target   by throwing  darts   as a group, and we could 
control the most important variables involved in successfully repeating the task, 
such as the  distance   from the target, the height, and the  force   of the throw. Figure  1.3  
represents two outcomes of the activity.

  Fig. 1.3    Outcomes of the 
dart task; the crosshair 
represents the  target  , and 
the dots individual shots. 
According to the above 
defi nitions, which outcome 
is more accurate, and 
which is more precise?       
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   Both  accuracy   and  precision   are extremely important in all  scientifi c    measurements  , 
as well as in other areas where  events   or  processes   occur, and descriptions need to be 
provided. Consider  broadcasting   and  journalism   where reports about newsworthy 
 events   (the crosshair) are provided by different agents (the dots), the need for accuracy 
and  precision   is no less important here than in  scientifi c    work  , don’t you think? 

 As stated before, a  displacement   or  disturbance   is necessary to create a  vibration   
about a reference or  equilibrium   point, the  material   or  medium   in which the  vibration   
takes place must exhibit the property of restoring the initial  undisturbed   condition 
after a  period   of time. When the  movement   is repeated (away from equilibrium and 
returning to it) an oscillation results. Whenever the  oscillation   takes place during a 
fi xed amount of time, it will be called  periodic   (a term that will be explained in detail 
in the following chapter). A special case of periodic  motion   is described by  Hooke’s 
Law  , discovered by Robert  Hooke   in the seventeenth century. It occurs in situations 
where the  force   acting on an object is proportional to the  position   of the object 
relative to some equilibrium position (like the motion of a  mass   attached to a  spring   
or a  pendulum  ). The  proportion   or  relationship   between the force and the displace-
ment requires that the force be always directed toward the equilibrium  position  , in 
which case the motion is called   simple harmonic motion   , and that the  quantitative   
variation between them be linear. This way the graph representing the  motion   looks 
like a straight line. 

 A  fundamental   idea in the study of all wave  phenomena  ,  Hooke’s Law   can be 
introduced in either of two ways: (1) horizontally—as a  mass    m  attached to a  spring  , 
the mass being free to move (provided it rests on a  frictionless    surface  ), and (2) 
vertically—as a mass  m  suspended from a spring, as illustrated in Fig.  1.4 . In both 

  Fig. 1.4    Horizontal ( a ) and vertical ( b )  representations   of a  spring   being elongated due to a  force   
on the attached  mass  . Either  representation   can be used to introduce  Hooke’s Law  , although ( a ) is 
typically chosen with the proviso that the  surface   on which the mass lies is  frictionless         

 

1 Introduction to Wave Phenomena



9

situations the spring could initially be un-stretched, in (a) the mass could still be 
attached, but the mass shown suspended from the spring in (b) couldn’t be there. We 
could still show  equilibrium   in (b), such that the  force   that causes the  elongation   
( gravity  ) can be incorporated into another expression (gravity minus the spring 
force) that also represents the  spring   being at rest. Nevertheless, in both cases the 
 relationship   expressed as Hooke’s Law can be represented by the spring experienc-
ing a force that according to  Newton’s third law   of  motion   (action–reaction) leads 
to the spring reacting to it by moving back to equilibrium.

   Choosing (a), when the spring is neither stretched nor compressed, the mass- 
spring system is at the  equilibrium    position   , meaning that  x  = 0. Such a system will 
 oscillate   back and forth if disturbed from its equilibrium position. 

 When stretched or compressed by a force of  magnitude    F ,  Hooke’s Law   states 
that the  spring   will react with a force  F  s  = − k x. F  s  is the magnitude of the restoring 
(spring) force, being always directed toward the equilibrium position. Therefore, it 
is always opposite to the  displacement      from equilibrium, hence the negative sign in 
the  equation  ;  k  is the  spring   constant and  x  is the  displacement  . 

  It is extremely important to distinguish between  F , the  force   that causes the initial 
 disturbance  , and  F  s  the  elastic   or restoring  force  , since the latter is the one that 
describes the  behavior  of the  spring  . 

 There is an interesting historical context in which  Hooke   made his discovery. 
 Anagrams   (a type of riddle to publicly claim priority in a discovery, while preventing 
anyone else from knowing what it was) were popular in Hooke’s time. As  Galileo   

 Clarifi cation 
 You may have noticed the use of terms that you might not be familiar with, 
such as “ magnitude  ” and “ displacement  ” in the last paragraph. There is a 
term in  physics   that is useful in describing quantities representing properties 
of  nature   that need two things to be properly defi ned. It is called a   vector   , 
and it requires a magnitude (a number with units or dimensions), as well as 
a direction. An example would be the  motion   of a football player that upon 
catching the ball and running into an opposing player is pushed back before 
stopping. The total  distance   the player covered would not take into account 
which way he moved; however, the gain would need to include both dis-
tance and direction, since it is a  vector   (in this case it is the displacement). 
One can see that in terms of the game there is more information contained 
in knowing the gain, as opposed to simply knowing how much distance he 
covered. Another example would be an airline pilot on approach being 
given information by the control tower; it is more useful to know what dis-
tance, as well as what heading or direction the plane is on, than just knowing 
how far away it is. 

  Forces   are examples of vectors, hence the need to specify the amount of 
force (the magnitude) as well as its direction in the case of  Hooke’s Law  . 

Theoretical Background
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had done some 60 years earlier when he discovered the rings of Saturn (actually he 
couldn’t make out the rings with his telescope, but cleverly used an anagram describ-
ing them as giant ears around the planet), Hooke published his anagram in 1676 as 
 ceiiinosssttuv . The arrangement of the letters in Latin was revealed by him 2 years 
later as “ut tensio sic vis” which translates into English as “as the  extension  , so the 
force” [ 1 ] which has come to be known as  Hooke’s Law  , in symbolic form  F  = − kx . 

 Exploratory Task 
  Determining the    accuracy     and    precision     of    predictions     and    measure-
ments     with a set of    springs    .  

 Investigating the properties of springs allows one to apply  Hooke’s Law   to 
obtain the values of unknown  masses   from the graphical  relationship   estab-
lished between the  forces   of known masses and the  elongations   of various 
springs. An online  simulation   can be used (  http://phet.colorado.edu/index.
php    ). 

 Choose the  mass-spring lab  from the available choices, make sure the 
screen looks just like the fi gure below.

     

    (I) The  springs   are identical (they have the same value of  k ), and they 
stretch different amounts from the  equilibrium    position   (the dashed line) due 
to the different  masses  .

•    Note the vertical  displacements   on the  springs   (after you attach the masses 
the springs pull back, but  they don’t return to the equilibrium    position   ). 
Record the  displacements      in the table that follows. Make sure to divide the 

(continued)
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value by 100 to convert the cm to meters. For each  mass  , convert it to Kg 
by dividing the mass in grams by 1000, and then multiply the value by 
9.8 m/sec2 to obtain the  force   acting on the mass. Record each force on the 
same table. Then remove the known masses and replace each one with its 
equivalent size (the 50 g one with the smallest one, the 100 g with the 
middle one, and the 250 g with the largest one).  

•   Record each displacement of these unknown masses (   ), (   ), (   ).  
•   Based on the vertical displacement, and comparing it to that with the clos-

est known mass, can you predict the value of each unknown mass?    

 M 1  (the smallest) ________ 
 M 2  (the  medium   sized) _________ 
 M 3  (the largest) _________ 
 (II) Now plot the data obtained from each of the known masses and the 

vertical  elongation   (the  displacement  ) of the particular  spring   it is attached 
to. The  force   (the product of each  mass   in kg and the local gravitational 
constant,  g  = 9.8 m/s2) along the vertical axis and the displacement along the 
horizontal one.

   

Object Mass

(Kg)

Force

(mass x 9.8 m/sec2)

Displacement

(meters)

M1

M2

M3

  

       

    Draw the “best fi t” line (a line that connects the dots) and determine its  slope .

 

Difference between the larger and the smaller of any two of the three foorces

Difference between the larger and the smaller of any two of thee three displacements   

Theoretical Background
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  There are many  applications   to other phenomena that are based on the consideration 
of what happens to a  spring   when it moves repeatedly back and forth after a  mass   
has been attached to it. They are examples of the usefulness of  Hooke’s Law   in 
describing the behavior of a spring, or an object moving in a similar manner 
(describing simple  harmonic    motion     ). The  mathematical   description of its motion 
forms the basis for the treatment of  periodic   motion (the back-and-forth or up-and-down 
motion repeats and  oscillations   result). 

 Let’s use two examples to illustrate the usefulness of  modeling   situations or 
 interactions   that are essentially invisible, where the details are beyond the level of 
 perception  .

This represents  k  the  spring   constant.

•    Locate each  displacement   from those recorded in part (I) for the unknown 
 masses   on the graph on the horizontal axis; draw a line from each  point   to 
the best fi t line, and then from the best fi t line to the vertical axis to determine 
the value of the  force   for each point.  

•   Finally divide each value of the  force   by 9.8 m/s 2  to determine the mass 
corresponding to each point. This will yield the corresponding mass in Kg, 
which needs to be multiplied by 1000 to convert it back to grams. How do 
they compare to your predicted values in part (I)?    

 (III)  Refl ection   
 The  springs   in this  simulation   can be used over and over and they will not 

change since this is a virtual setting; however, in a real setting actual springs 
will change with repeated use.

    a)    How will such use affect the springs?   
   b)    What property of the springs used in this simulation will show the change, 

and in what way?    

   Exercises  
 Using the same  simulation   as in the task above.

    1.    What happens to  spring   3 when you change its softness to “soft” and then 
to “hard,”, and then attach each of the masses to it?   

   2.    Using the softness of spring 3 back in the middle of the range, predict what 
will happen to it when the 50, 100, and 250 g masses are attached to it, if 
you choose to do the experiment on the  Moon  . 

  Prediction   ________________________________________________
______________ 

 Now choose “Moon” from the choices in the lower right-hand side of 
the  simulation      and test your  prediction  . How did you do?   

   3.    Change the friction rider to the middle of the scale (and back on  Earth  ), 
and describe what happens to all the  springs   as each  mass   is attached to it.     

1 Introduction to Wave Phenomena
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    (1)    We can visualize the concept of a  fi eld   as a collection of points in  space   where 
an object experiences an effect (depending on the type of fi eld) due to the action 
resulting from imagined  springs   that stretch or compress depending on where 
the object is. Figure  1.5  illustrates such a model.

       (2)    We can also visualize the  microscopic   behavior of  matter   by imagining the 
 molecules   that constitute  material   objects as being attached to each other with 
 springs  . Of course other models of matter have been historically used, and are 
currently modifi ed such as the planetary one. However, for purposes of  interac-
tions   and behavior under different conditions such as  phases   ( solid  ,  liquid  , and 
 gaseous  ), the overall dependence of states of matter on  temperature   can be 
effectively understood with a spring model. Figure  1.6  illustrates how this can 
be accomplished.

       To summarize this chapter we discuss the ways in which the speed of the two 
waves this text concerns itself with has been determined. They are based on the 
same  relationship   that we already introduced in the discussion of the  propagation   of 

  Fig. 1.5     Representation   of a  fi eld   and its effect on an object as a region of  space   fi lled with  springs   
that stretch ( the    length     of the arrows ) depending on where the object is. The presence of a single 
object is represented in ( a ), that of two objects in ( b ), and that of several in ( c )       

  Fig. 1.6     Representation   of a  model      of molecular structure using as a basis the cube in ( a ) that 
contains a  molecule   or an atom at each corner attached to other molecules or atoms with  springs  . 
In ( b ) the substance is meant to be a  solid   (ice) at −116 °C, in ( c ) it is meant to be a  liquid   ( water  ) 
at 55 °C, and in ( d ) it is meant to be a gas (steam) at 536 °C. Using the  spring   model, what do you 
notice about the arrangement of the molecules that is different in each case?       
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 signals   through the human  body  . The  relationship   is expressed by the  ratio   of the 
given  distance   traveled by the waves and the time taken. Interestingly, both attempts 
to determine the speed of  light   and of sound initially took place in the seventeenth 
century [ 2 ]. 

 In the case of light, the earliest known attempt was that of  Galileo   Galilei, who 
attempted to measure the  distance   between two locations (the top of mountains), 
and the time that it took for two lanterns to be covered during the night. As he found 
out, the time taken for light to travel the distance between the mountains could not 
be measured, as the covering of the lanterns seemed  instantaneous  . It became appar-
ent that much longer distances were needed given such believed large speed for 
light. The fi rst determination was provided later in the century by the Danish  astron-
omer   Olaf  Roemer   who observed the  eclipses   of one of  Jupiter’s    moons   (inciden-
tally discovered by Galileo).  Roemer   determined a  discrepancy   in the time between 
the eclipses, increasing when the  Earth   was moving away from Jupiter and decreas-
ing when the Earth was approaching. He correctly surmised that if the speed of light 
was infi nitely fast, there should be no difference between the measured times for the 
eclipses’  duration  . 

 In Fig.  1.7  the lower left-hand side shows the  orbit   of the earth around the  sun  ; 
the larger circle represents the orbit of  Jupiter   with the small circle being the orbit 
of one of Jupiter’s moons, Io. In (a) when the moon has just gotten behind the 
shadow of Jupiter, its eclipse begins. The time ∆ t  1  that it takes the moon to emerge 
from Jupiter’s shadow is measured when the Earth is at a  distance    D  1  from Jupiter 
(J 1 ). In (b) the Earth has now moved on its orbit around the  sun   to  D  2 , and the time 
∆ t  2  for the eclipse has now increased.  Roemer   reasoned that if light had an infi nite 
speed, there should be no time difference between an eclipse observed at (a) and at 
(b). In other words, it wouldn’t have  mattered   where the earth was in its orbit in 
either case, ∆ t  1  should be equal to ∆ t  2.  But they aren’t.

  Fig. 1.7    The fi gure shows the time difference in the  measurement   of the  length   of the  eclipse   of 
one of  Jupiter’s    moons  , Io. In ( a ) the Earth is closest to the planet, and in ( b ) the  earth   has now 
moved on its  orbit   around the  sun  . The diagram is not to scale       
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   Roemer’s value, the fi rst for the speed of light, was off due to imprecisions in the 
time  measurement   and the fact that the  Earth’s   distance from the  sun   wasn’t accu-
rately known. However, further improvements in the determination of both  quanti-
ties   have led to a very precise measurement of the speed of light. It is currently taken 
to be roughly 300,000 km/s or about 186,000 miles/s. 

 In the case of sound, Isaac Newton was the fi rst to attempt to determine its speed 
in the same century. The approach involved knowing the same two quantities, the 
distance taken by sound to travel and be refl ected by a wall as an  echo  , and the time 
taken. Newton’s technique was further improved and with increasing knowledge of 
the properties of air as an  elastic    medium   or substance, it has come to be determined 
based on air  temperature  . We use the following expression for the speed of sound, 
taking into account that it isn’t a constant as that of light is taken to be.

  
V T= +( )331 0 60. /°C m s

   

where at room temperature (22–25 °C), the speed is roughly 345 m/s. 

 Virtual Experiment 
 A determination of the speed of sound can be performed online with a  simula-
tion   depicting a series of  pulses   from a  loudspeaker  . The  distance   each pulse 
travels and the time it takes to travel the distance can be measured. 

 Using the fi gure below, how would you determine the speed of the sound 
from the loudspeaker? 

 Go online at (  http://phet.colorado.edu/index.php    ); select “sound” from 
the  Physics   simulations, make sure that your screen looks exactly like the 
fi gure below.

     

(continued)
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    Make sure to choose the Tab “Measure” and while the top rider on the 
right-hand side doesn’t have to be the same number (195), the lower one 
should be at the right end as shown. 

 The task is to start the  timer      when the end (the left edge) of one of the dark 
bands passes through the zero (0) mark on the meter stick, and then to stop the 
timer when the same end passes the 5 m mark (if the band is too faint by the 
time it gets to 5, then choose 4 as the point to stop the timer). 

 Repeat fi ve times and divide the  distance   you have chosen for the edge of 
the dark band to travel by the average time obtained from the table below. 
This will yield the speed of the sound produced by the  loudspeaker  .

   

Trial Time
1

2

3

4

5

Average
  

    While you cannot determine what the effect of  temperature   is on the speed, 
you may still compare your result to

  
V = +( )331 0 60. /T C m s°

   

Assuming room temperature (≈22 °C) 
  V  = 
 What were the most challenging  parts   to deal with in performing the 

 simulation  ? 

 We shall use  V  as the symbol for both  speed  and  velocity  in this book, disregarding 
the fact that one is a  scalar  , and the other a  vector  . 

        Experimental   Task: Determining the Speed of Sound 

 There have been many attempts to measure the speed of sound, beginning in the 
seventeenth century and including efforts by Newton himself. He determined the 
speed by producing a  noise   that traveled along a long corridor and upon refl ecting 
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from a wall was heard as an  echo  . The timing mechanism he used was a pendulum, 
and the time taken for a trip of the  pendulum   was equated to the time taken by the 
sound to travel down the corridor and back [ 3 ]. 

  Newton’s   result was inaccurate due to the timing mechanism, and the then 
unknown dependence of the speed of sound on the  temperature   of the air. 

 We are able to perform Newton’s experiment in a modifi ed way that allows for 
much more accurate determinations of the values involved in the speed of sound. 
The most signifi cant one is the time  measurement  . By using a  microphone   one can 
measure the time taken by a  pulse   to travel the  length   of a tube closed at one end, 
as shown in Fig.  1.8 .

   This experiment version is a modifi cation of the one developed by  Vernier   
Software and Technology, and available in their   Physics     with Vernier   manual   of 
activities. The advantage of using it is that the fi le already has the settings for time 
 measurement   arranged to be displayed in the most user-friendly way. 

 Our objective is to measure both the length of the tube (the  distance   in the formula) 
and the time taken by the sound to travel this length, and then to use the formula

  
Distance speed time to find the speed of sound= ( )( ) .

   

As Fig.  1.8  shows the  microphone   needs to be held at the entrance to the tube; a 
sharp sound is produced, either by snapping one’s fi ngers or clapping hands. Other 
objects may be used, as long as the sound produced is sharp. The microphone  signal   
needs to be displayed by using an  interface  , such as  Vernier’s   LabQuest. An example 
of the display is shown in Fig.  1.9 .

  Fig. 1.8     Experimental   setup for the determination of the speed of sound inside a tube that is 
closed at one end. The tube should be isolated to minimize  vibrations   that can contribute to the 
 signal   produced at the  microphone         
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   The  signal   generated is refl ected at the other (closed) end of the tube and is 
shown as being also refl ected inside other parts of the tube. The two largest sections, 
beginning with the leftmost one represent the sound being recorded by the micro-
phone at the outset, and upon returning to it. The time difference between these 
large sections is consistent with what one would expect for sound to travel the 
length of the tube back and forth, to be picked up by the microphone. 

 Being that this time is the largest source of error in the experiment, it is advisable to 
record it several times to fi nd an average value. The data are recorded in Table  1.1 .

   We must divide the  average   time from the table by two, as it is the time taken by 
sound to travel to the closed end of the tube, and back to the  microphone  . 

 We then measure the  length   of the tube and divide it by the time to get the 
speed of sound. 

 The accepted speed of sound at  atmospheric    pressure   and 0 °C is 331.5 m/s. 
Determine the  temperature   of the room and use the following  equation   to calculate 
the expected value of the speed.

  
V = +( )331 0 60. /T C m s°

   

Compare this value with the  experimentally   obtained value from the tube data, and 
determine the percent error.

4
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  Fig. 1.9    Sample graph obtained by snapping one’s fi nger at the  position   of the  microphone  ; the 
initial peaks represent the  signal   produced, and the next set of large  amplitudes   represents the 
refl ected signal picked up by the microphone       

  Table 1.1    Travel times for the 
 signal   generated by snapping 
one’s fi ngers at the  position   
where the microphone is 
located. The time recorded in 
each trial is that for the signal 
to travel the  length   of the tube 
and return to be picked up by 
the  microphone       

 Trial  Total travel time (s) 

 1 
 2 
 3 
 4 
 5 
 Average 
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Write a report including the following sections. 

     1.    Objective   
   2.    Brief procedure   
   3.    Data, calculations, and results   
   4.     Refl ections  -Analysis and discussion of sources of error.     

   Tasks on Accuracy and Precision 

  Experimental   Task 
  Introduction to    Measurement           (Accuracy and Precision)  

 The objectives are to introduce you to the concepts of accuracy, average, 
and  precision  , and to allow you to see how measurement plays such an impor-
tant role in the determination of the values of those quantities considered 
 constant  in  nature  . Additionally a discussion of the sources of error inherent 
in every experiment that involves measurement will expose you to the reali-
ties of  scientifi c       work   where all measurements involve uncertainty and the 
means to minimize it. 

  Part I 

•    You will measure and record (Table I) the  circumference   and the diameter 
of several  circular   objects (see fi gure below).  

•   You will plot the data and determine the slope of the line; a determination 
of the class average (Table II) of this value will enable you, upon discus-
sion, to understand the  process   involved in arriving at the accepted (stan-
dard) value of the  relationship   between the circumference and the diameter 
of any circular object.    

  Question: What do you think this relationship represents? 

     

      (1)    Wrap the  string         around the  circular   object and determine its exact length (the 
 circumference  ); then extend the string and measure its  length   with a ruler.   

   (2)    Measure the diameter of the object with the ruler. Record the values in the 
table below.    

(continued)
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   Table I  Values of diameter and  circumference  

   

Object Diameter (cm) Circumference (cm)

  

     Table II  Values of the  slopes   and their uncertainties (uncertainty = [average 
- each value]. All uncertainties are written as positive values)

   

Slope Uncertainty Slope Uncertainty

Average Precision
  

    ( Precision = average uncertainty) Accuracy: % Accuracy: % Precision:

     

(continued)
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      Refl ections     on the    results           (use accuracy, precision, and whatever you 
consider sources of error in the    measurements        as part of your comments  ): 

     
       

     

Time (seconds) Temperature (°°)
Analog 

Thermometer

Temperature (°)
Digital 

Thermometer
0

10

20

30

40

50

60

70

80

90

100

110

120
  

       

     Part II.    MEASUREMENT        OF TEMPERATURE  
 Determine the temperature reading of the thermometer before placing in 

the palm of your hand and grasping it. As you hold it record the temperature 
every 10 s. Fill in the table below and then graph the results.  The time will be 
the independent variable, and the temperature the dependent variable.  
Determine from the graph the maximum temperature (the point where the 
readings stabilize). 

  Question: Do you expect the relationship between hand temperature 
change and time to resemble the graph of circumference and diameter for a 
circular object? 

     

(continued)
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    Maximum Temperatures =   (Analog)   (Digital) 
 Now fi ll in the table with the temperature maxima obtained by all members 

of the class. Note: if you only have  access      to either type of  thermometer  , 
the data can be collected and one of the columns is enough to display the 
relationship.

   

Analog Digital

Temperature (°°) Uncertainty (°°) Temperature (°°) Uncertainty (°°)

Average Precision Average Precision
  

(continued)



     Analog results  
 Accuracy   % Accuracy   %  Precision        : 
  Digital results  
 Accuracy   % Accuracy   % Precision: 
  Part III.    MEASUREMENT     OF HEART RATE  
 Fill in the table with  your average  heart  rate  ; determine the number of heart 

beats in 1 min, do it three times, and then average the result. If the values are fairly 
constant, three times is probably enough, otherwise do it a couple of more times.

   

Heart Rate (#) Uncertainty (#) Heart Rate (#) Uncertainty (#)

Average Heart Rate Average Uncertainty (Precision)
  

     Accuracy:   % Accuracy:   % Precision:  
   Refl ections     on the    results    : 

     

       

       

       

      ACCURACY     AND    PRECISION     IN    WORKS        OF ART  
  (Examples from Diego de Velazquez) 
    1-La Rendicion de Breda (The surrender of Breda).   

    

(continued)
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      2-Don Juan de Pareja   

    

    (Wikimedia Commons) 
 Suppose the  Hue   (the most dominant color)—a property to distinguish one 

color from another is measured for several reproductions of the paintings 
above. The degree of consistency between the reproductions can be an indication 
of   precision       ,  whereas how faithfully the reproductions copy the original can 
be an indication of   accuracy    .  

          References 

    1.   French, A. P. (1971).  Newtonian Mechanics , Norton, p.227.  
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    Chapter 2   
 General Characteristics of Waves       

          As stated in the previous chapter, the advantage provided by an understanding of 
 wave    motion   in describing apparently unrelated  phenomena   lies in the fact that all 
waves share the same properties and follow the same rules. While a detailed analy-
sis of wave  motion   involving the  mathematical   description and  representation   of its 
properties requires a certain level of mathematical profi ciency, many if not most 
of the characteristics of waves necessary for a thorough understanding of wave 
 phenomena   can be acquired without extensive mathematical manipulation. 

 Activities Designed to Elicit Prior Knowledge 
 Consider the following situations (in all likelihood you have an idea about 
each one, but all will be better understood once you become familiar with 
the properties of waves):

    1.    Go online at (  http://phet.colorado.edu/index.php    ); select “ sound  ” from the 
 Physics    simulations  , make sure that your screen looks exactly like the fi g-
ure below. The Tab selected is “Listen with Varying Air  Pressure  .” Once 
you hit the Play button you will hear a sound, before you click on the box 
that says “Remove Air from Box” can you predict what is going to happen 
to the sound? Make your  prediction   and then follow the  simulation  . 

(continued)
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    Describe what happens and provide an explanation for it; how does the 
outcome compare to your  prediction  ?   

   2.    Suppose you and a friend are talking alongside a building as you move 
away from each other and at some point one of you turns a corner of the 
building as you continue to talk. Why can’t you see each other but can still 
hear one another?   

   3.    If you look at the full  moon   as it appears above the  horizon  , does it look 
different if you look at it standing and staring directly at it, and if you look 
at it after you turn around, bend over and look through your legs?   

   4.    Why do native Americans in some movies put their heads to the ground to 
hear whether a stampede is coming their way?   

   5.    Is the public suffi ciently aware of the potential dangers of cell  phone    radia-
tion  ? Why would anyone trying to make a phone call from a cell phone in 
a rural area be exposed to more  radiation   than in an urban center?   

   

6

.         

(continued)
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  The diagram on the left shows  light   striking the window of a room where there 
is a plant on the windowsill. According to the diagram, waves of different 
 length   strike the glass; what is happening in terms of the properties of these 
waves and how does that affect the plant?     

  The easiest way to approach the study of waves is to begin with their most basic 
 component  , a   pulse   . It is a single  disturbance   (like a push or a pull) to an object or a 
collection of objects (a system) that causes a  movement   away from its initial loca-
tion, and to which it aims to return. This property of objects is best defi ned as a 
“springing” back to the initial condition, and the disturbance either dispersing or 
remaining intact as it propagates through the object or the system. 

 Exploratory Task 
 Does the  speed   of a  pulse   in a rope or a string depend on how much  force   is 
applied to them by shaking the hand more vigorously? 

 ANSWER: 
 What are your reasons for the answer? 
 Now test your answer by using a  simulation   at http://phet.colorado.edu/

index.php. 
 Choose “Wave on a string” from the available choices. With the  simulation   

open, make sure it looks like the diagram below. 

      

•      Click  as simultaneously as possible  the Pulse and Play buttons and deter-
mine how long it takes for the  disturbance   (the  pulse  ) to reach the ring at 

(continued)
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  Fig. 2.1    Illustration of a  pulse   resulting from the  motion   of the hand that sends a  disturbance   
along a rope attached to a wall at the other end. The  thin arrows  represent the  motion   of the rope 
 components   and the  thick arrows  represent the  motion   of the  pulse  . It is important to distinguish 
the  motion   of the rope resulting from the initial  disturbance   caused by the hand  movement  , from 
the direction of  propagation   of the  pulse         

the end. Stop the  timer   and record the value. Repeat for “ Amplitude  ” (the 
equivalent of the amount the hand is moved) values of 0.50 and 0.90.  

•   Now select “ Amplitude  ” back to 0.20 and then change the  tension   to the 
middle of the scale; repeat the  measurement   of the time. Finally, change 
the  tension   to high and repeat once more, then fi ll in the table.    

    

Amplitude Tension Timer Reading
(seconds)

.20 low

.50 low

.90 low

.20 middle

.20 high

  

    What does the table suggest? 
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  Figure  2.1  shows a rope through which a  pulse   propagates; the ability of points 
on the rope to return to their initial  position   after the pulse has passed is a result of 
the property described by  Hooke’s Law  .

   There are many ways in which  pulses   can be created depending on the  material   
or  medium   through which they propagate; for now let’s concentrate on the proper-
ties of  pulses   as they move through a rope since these are common to other types. 

 A distinctive property of  pulses   is that they can go through one another as they 
 interfere  . The use of the term  interference   is different in this context from that of 
everyday language, where  interference   is used as an impediment or obstruction. 
When  pulses    interfere   they do not collide or bounce off each other as objects do 
when they meet. Instead the various points displaced on the rope will reinforce or 
diminish, comparable to adding or subtracting each other depending on their orien-
tation. This results from a property known as  superposition  . Additionally, when 
reaching a boundary between the rope and another object (such as at the point on the 
wall where the  pulse   in Fig.  2.1  ends), or between different types of ropes, the ori-
entation and height of the  pulse   may or may not change, depending on the properties 
of the ropes (such as thickness,  density  ) or the rigidness of the boundaries (whether 
fi xed or fl exible). 

 Exercise 
 Based on the previous section, predict what happens to the  pulses   when they 
meet at the origin by drawing the resulting shape of the rope at 0 for each of 
the fi gures that follow. 

      

(continued)
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  In order to begin our discussion of wave characteristics, it is useful to provide a 
simple example of someone attempting to transfer  energy   (in the form of heat and 
sound) to a wall located at a certain  distance  . 

 When  energy   or other forms of information are to be  transmitted   through  space  , 
this can be accomplished by either sending the  energy   as contained in an object, or 
as contained in a  pulse  , or as a wave. These three cases are shown in Fig.  2.2 .

   One of the defi ning characteristics of a wave is that unlike a  particle  , it cannot exist 
at a single  position   or location in  space  . The wave is instead spread out. In the example 
the bowling ball and the rope represent  material   objects containing many  particles  . 
However, the way they each transfer  energy   is very different. 

 In addition,  particles   carry  matter   from one place to another, but not waves. The 
 motion   of the  matter   that constitutes or makes up the above wave (the  mass   of the 
rope) will be in a direction other than the one the  energy   travels. The  motion   of the 
 matter    components   of a wave can be along certain directions, but it isn’t from where 
the wave begins to where it ends. 

 Waves come in many forms and shapes but they all have similar characteristics, 
which can help to develop a general understanding of their properties. Some exam-
ples of waves will be:

    (1)    A pebble that hits a still  water    surface  , the resulting  circular   wave or  distur-
bance   spreads out in all directions from the point of impact. An object fl oating 
on the disturbed  water   will move both vertically and horizontally about its orig-
inal  position  , but it is not displaced along the wave.   

   (2)    A string that is plucked; the neighboring pieces on it pull on each other when a 
 displacement   is  transmitted   along the string. All  particles   of the string will 
move the same way as that caused by the initial  disturbance  , regardless of the 
wave’s speed.   

   (3)    A sound created by a falling object that hits the ground is also a wave that is 
made up of regions of compression and  expansion   of the air.   
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  Fig. 2.2     Energy Transfer to a Wall— The  top part  shows a person throwing a ball against the wall 
on the right; the  energy    transmitted   to the wall will be where the ball is at the three locations shown. 
The  middle part  shows a single  pulse   being created and sent through a rope to the wall; the  energy   
in this case will be contained in the  pulse  , but it will be spread throughout the  length   of the rope. The 
 bottom part  shows that if the person instead shakes the rope several times and sends the  energy   to 
the wall through the rope this way, more than one  pulse   is generated, and this constitutes a wave       

   (4)    The reception of television and-or cable programs that result from  electromag-
netic   waves being broadcasted by specifi c providers or sources.     

    Classifi cations 

 There are two major ways to classify waves:

  I. 

   (A)      Mechanical     waves— Some physical  medium   or  material   is disturbed. The wave 
is the  propagation   of such a  disturbance   through the  medium   or  material  . 
Examples are sound,  water  ,  earthquake   waves, and waves in a rope or string.   

   (B)      Electromagnetic     waves— No physical  medium   or  material   is required for such 
waves to propagate, although  space  -time can be considered as a  medium  . The 
point is that  electromagnetic   waves can carry information without the need of 
a  material   substance, as compared to every other type of wave. Examples are 
light,  radio   waves, and  X-rays  .     

 Both examples are shown in Fig.  2.3 .
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   II. 

   (A)      Transverse     waves— Those where the  particles   or wave  components   oscillate at 
right angles or perpendicular to the way the wave travels. Examples are  elec-
tromagnetic   waves, secondary/shear (s- earthquake   waves), and the wave 
shown in Fig.  2.2 .   

   (B)      Longitudinal     waves— Those where the  particles   or wave  components   oscillate 
along the direction the wave travels. Examples are sound waves, 
primary/ compressional   (p- earthquake   waves), and those produced by com-
pressing or stretching a slinky.    

  Both examples are shown in Fig.  2.4 .

  Fig. 2.3    ( a )  Mechanical   wave—the ripples make up the wave that propagates in all directions. ( b ) 
 Electromagnetic   wave—the  arrows  represent the  oscillations   of the electric and magnetic  fi elds         

  Fig. 2.4    ( a )  Transverse   wave. ( b )  Longitudinal   wave; the  longitudinal   requires further elaboration 
since the fi rst part shows a  loudspeaker   emitting the sound while the second part shows the detailed 
 motion   of the air. In both ( a ) and ( b ) the   solid     arrows  represent the  motion   of the  components   of 
the wave, and the  dashed ones  represent the direction of  propagation   of the wave       

 Exercise 
 Imagine yourself in traffi c along a highway and try to visualize how the 
 motion   of the vehicles can be represented by a wave. Since there are areas of 
 congestion   and  expansion   in terms of the  space   between vehicles as they 
move, it would be decidedly dangerous to drive in such a way that one of the 
two types of waves in Fig.  2.4  could be approximately represented by some-
one weaving in and out of lanes. However, the other type of wave invariably 
results as traffi c fl ow varies. In what ways is the  motion   of the vehicles similar 
to that type of wave, and in what ways is it signifi cantly different? 
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    There are some types of waves that consist of a combination of  transverse   and 
 longitudinal    motion  , such as  surface    water   waves, where the  motions   of the  water   
 particles   or wave  components   can be visualized as being  circular  , as seen in Fig.  2.5 .

   A generic drawing can be used to introduce the main properties of a wave. The 
diagrams are similar to facilitate the comparison between the determination of the 
wave’s  length   and the time it takes to complete a  cycle  . Note that the units for the 
horizontal axes are different as the labels indicate, while those for the vertical axes 
are identical. The use of the term  displacement   is meant to emphasize that the  motion   
of the  particles   that make up the wave is in a defi ned direction from the  equilibrium   
 position  , represented by the horizontal dashed line. The range is from 0 to 10 up or 
along the positive direction, and down or along the negative one, as shown in Fig.  2.6 .

  Fig. 2.5    A complex wave that represents the familiar undulation of  water   waves; as one follows 
the sequence from 1 to 9 each point moves on a circle as indicated by the  small arrows , but the 
collective  motion   is as indicated by the  dashed arrow        

  Fig. 2.6    Two  representations   of a wave’s characteristics; both parts have the same numerical val-
ues for the axes to simplify the way that a complete  cycle   or wave can be understood in terms of 
the wave’s  length  , and how long it takes to complete a  cycle         
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     (1)    The   Amplitude    of the wave is the  maximum    displacement   from  equilibrium  , in 
both cases ±5.   

   (2)    The   wavelength    ( λ ) from the fi rst diagram is the  distance   between correspond-
ing points on the wave, in this case 4 cm.   

   (3)    The   Period    ( T ) from the second diagram is the time for the wave or  cycle   to 
repeat itself, in this case 4 s.   

   (4)    The   frequency    (ƒ) from the second diagram is the number of  cycles   or waves per 
unit time passing a given point. Since the basic unit of time is the second, we 
see that in this case there are two and a half waves or  cycles   represented over a 

 period   of 10 s, so  
2 5

10

.

s  
  = 0.25 Hz. The Hertz (Hz) is the standard unit of  fre-

quency   and it denotes one  cycle   or wave per second. 
 At this point we can see that the  period   and the  frequency   are  inversely   

related, which is generally expressed as  T  =  
1

ƒ  
 .   

   (5)    The  speed  or  velocity , both terms will be used interchangeably in this book and 
denoted by the same symbol  v . Since the general defi nition of speed is the 

change in  distance   over time we can write  v  =  
D

t  
  and since the change in  dis-

tance   is the  wavelength  , and the time is the  period  , we can write  v
T

=
l

 
  Using 

 T  =  
1

ƒ  
  v =  λ  ƒ. 

 Either highlighted  equation   can be used to fi nd the wave’s speed. 
 It can be seen from the fi gures above that a wave with larger  wavelength   will 

also take longer to complete a  cycle  , thus having a greater  period  , and a smaller 
 frequency  . On the other hand, very short waves have correspondingly small 
 periods   and large  frequencies  .   

   (6)    The   Energy    of a wave will depend on different wave properties. For  mechanical   
waves (regardless of whether they are  transverse   or  longitudinal  ) the  energy   
depends on their   Amplitude   , and for  electromagnetic   waves it depends on their 
  frequency    .  

 The need for clarity and specifi city when using terminology to describe properties 
of waves cannot be over emphasized. Consider the use of the term “quickness” 
when referring to the  motion   of objects; if you are talking about waves you may 
say that a wave travels quickly and also say that waves are arriving quickly at a 
point. You are using the same term but you are referring to different properties of 
waves. The fi rst one is indeed a measure of a wave’s speed, but the second is a 
measure of a wave’s  frequency  .    
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 Exploratory Task 

      

     Simple Harmonic    Motion           using a    Pendulum    
 A  pendulum   is a convenient device to demonstrate the principles of simple 

harmonic  motion  , and the various wave properties introduced above. Its back- 
and- forth  movement   can be represented as a wave, where the  position   of the 
 mass   at the end of the  pendulum   changes from a reference point.

    (A) Virtual Part    Using the  PhET    pendulum     simulation   software (at 
  http://phet.colorado.edu/index.php    ), choose a given 
 length   and  mass   for the  pendulum  . Run the  simulation   
for a small angle (the  Amplitude   of the  oscillations  ) 
about 10°. Let the  pendulum   complete ten (10) complete 
 oscillations   (an example of an oscillation is given below). 

      

  A complete trip or oscillation of the  pendulum   is the time taken such that if 
released from B, the  pendulum   must return to B. 

 Record the time for the ten  oscillations   by using the 
stopwatch, and then divide that time by 10 to obtain the 
 period   ( T ) of the  pendulum  ’s     motion  .   

   (B) Laboratory Part    Since an oscillating  pendulum   describes simple 
harmonic  motion  , we can use a  motion   detector or a mobile  device            with an 
App to describe the  pendulum  ’s  motion  , and thus determine the  period   
from the graph. 

(continued)
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Use Phone as 
Motion Detector

  

     

Motion Detector

  
  Choose the same  mass   and  length   as you did in the  simulation  , using an 

 Amplitude   of about 10° release the  pendulum   and collect data with the 
 phone   in the  position   of the  motion   detector. Capture the  motion   as a graph 
and determine the  period   from the graph by dividing the total time of 
 motion   by the number of peaks.    
  Determine the % error between the  period   from the  simulation   and your 

 experimentally   determined one above. 

  %error
simulation experiment

simulation
=

-
´

T T

T
100

 
  

  %error =    

 Discuss your results by pointing out the likely  reasons            for your calculated 
errors. 

 Exercises 
     1.       (A)     What letters can be used to represent the  Amplitude   of the waves 

shown in Fig.  2.6 ?   
  (B)    Corresponding points for the  wavelength   and the  period   are sets of 

two numbers. Besides (0–4) cm, what other sets can be used?   
  (C)    What is the speed of the above waves?       

   2.    Describe the wave shown below in terms of the property that is changing

       .   

(continued)
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   3.    In all diagrams the dashed line represents the  equilibrium    position  

        

        

        

(continued)
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       .     

 Rank the above 5 waves from highest to lowest in terms of:

    (A)     Frequency     
   (B)     Amplitude     
   (C)    How do (d) and (e) differ from the others?   
   (D)    How does (e) differ from (d)?     

 (*) Note—Use  Amplitude   and  Frequency   in (C) and (D). 

(continued)
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 Exercise 
 Compare the three situations shown below; in each case the  spring   has been mov-
ing back and forth after a  force   set it in  motion  . Assume that  K  1  and  K  2  are equal, 
 K  3  is larger than both of them, and  X  1  and  X  3  are equal, but  X  2  is shorter than them. 

 Match the graph shown on the right column with the appropriate diagram 
shown on the left one.

      

      

       

 HINT: The  displacement   of the  spring   is equivalent to the  Amplitude   of the 
wave, and the greater the value of  K  the stiffer the  spring   is and so the lower 
will be the  frequency   of the wave. 

(continued)
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 Exploratory Task 
 Does the speed of a wave in a rope or a string depend on how fast the  oscilla-
tions   are created? 

 ANSWER: 
 What are your reasons for the answer? 
 Now test your answer by using a  simulation   at   http://phet.colorado.edu/

index.php    . 
 Choose “Wave on a string” from the available choices. With the  simulation   

open, make sure it looks like the diagram below. 

      

    The horizontal ruler can be moved to determine the  wavelength  , while the 
vertical one stays put.

•    Click  as simultaneously as possible  the Oscillate and Play/Start buttons 
and determine how long it takes for the wave to reach the ring at the end. 
Stop the  timer   and record the value. Determine the  wavelength   by placing 
the horizontal ruler so that it measures the  distance   between peaks. Repeat 
for “ Frequency  ” (the equivalent of how fast the  oscillations   are set up) 
values of 2.0 and 3.0.  

•   Now select “ Frequency  ” back to 1.0 and then change the  tension   to the 
middle of the scale; repeat the  measurement   of the time. Finally, change 
the  tension   to high and repeat once more, then fi ll in the table.    

(continued)
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 (*) The speed can be calculated by multiplying the  wavelength   by the  fre-
quency   ( v  =  λ  ƒ) 

    

Frequency
(Hertz)

Tension Timer Reading
(seconds)

Wavelength
(centimeters)

(*) Speed
(cm/sec)

1.0 low

2.0 low

3.0 low

1.0 middle

1.0 high
  

      1    What does the table suggest for

    (a)    The time taken for the waves to travel?   
   (b)    The speed of the waves?       

   2       (a)     What did you notice about the  wavelengths   as you made the changes?   
   (b)    Can you offer reasons for the answer in a)?         

      Other properties of the  material    components   determine the speed of a wave. In 
the case of a rope or string their  tension   and thickness have effects such that a 
greater  tension   results in higher wave speed, and greater  mass   per unit  length   (thick-
ness) yields a lower speed. In the case of sound, the  temperature   of the  medium   
through which the sound propagates and its  density   have similar effects on the 
speed of sound. However, once these properties are fi xed or maintained so that they 
are constant, as waves are generated and propagate, the above list of six (6) properties 
is suffi cient to account for the properties of wave  motion  . 
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 The speed of a wave determines how quickly the  particles   or  components   of 
the wave execute the  motion   caused by the source of the wave. However, the 
speed resulting from the  motion   of the  components   isn’t the same as the wave’s 
speed. In the stadium example from the previous chapter, how quickly you rise 
or lean against your neighbor will not affect how quickly the created  pulse   or 
wave moves through the stands. If anything, the faster your  motion   in either 
case the greater the  frequency   of the wave since it would take you a shorter 
amount of time to complete your  motion  . Of course, the wavelength will also 
change accordingly, as shown by the preceding simulation. We ought to clarify 
that in this case, a person’s  motion   can be considered as both the source of the 
waves and the  material   through which they travel. As a wave of this type travels 
around the stadium if some people begin to move differently, this will of course 
lead to the generation of a new wave.  

     Application   to Light 

 The speed of light as well as all  electromagnetic   waves has an interesting and unique 
property that can be seen from the entire  spectrum   in Fig.  2.7 , it is constant.

 Activity 
 If you draw a vertical line that connects the horizontal  wavelength   and  fre-
quency      lines (a dashed one is drawn going through the FM  radio   tower) 
regardless of where in the  spectrum   you do this, you will fi nd the same thing. 
Namely, if you approximate the value between the numbers along the  wave-
length   (they all vary from 1 to 10) and multiply it by the value of the  fre-

quency   (remember  v  =  λ  ƒ), you will get 300,000,000  
meters

second  
  or 3.0 × 10 8  

 
meters

second  
  as we shall see later in the chapter, when multiplying numbers in 

 scientifi c    notation   one adds the powers or exponents. In the case of the dashed 
line, the  wavelength   is approximately 3 m, and the  frequency   is approximately 

10 8   
waves

second  
 , so their multiplication yields the value of 3.0 × 10 8   

meters

second  
 . 

 This highlights the fact that all  electromagnetic   waves have the same 
speed. 
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    Another interesting characteristic of regarding  electromagnetic   waves as  radia-
tion   is that they take many forms or types, from heat to highly penetrating  X-rays   
and gamma rays, the shortest waves in the  spectrum  . Additionally, all objects radi-
ate  energy   depending on their  temperature  , and this  energy   can be distributed across 
different parts of the  spectrum  . Figure  2.8  illustrates how various objects can emit 
different forms of  radiation  .

   Figure  2.8  shows the curve displayed by all the  radiation   emitted by an object, 
also known as the blackbody  radiation   curve. The  temperature   of the  thermometer   
is shown in absolute or degrees Kelvin (100 °C ≈ 373 K). In part (a) the  radiation   is 
that emitted by the  sun   at 5778 K, where the curve peaks in the yellow part of the 
visible  spectrum  , where the  sun   radiates the most  energy  . The three letters (B, G, 
and R) that stand for the primary colors Blue, Green, and Red are shown next to the 
white symbol indicating that the entire  spectrum   is visible. The curve also hovers 
over regions with  wavelengths      shorter than 0.4 μm (the  ultraviolet  ) and longer than 
0.7 μm (the  infrared  ), indicating that the  sun   also radiates in those invisible parts of 
the  spectrum   beyond the visible range. 

 In part (b) the  radiation   emitted by a campfi re at 1500 K shows the curve peaking 
at around 2 μm way beyond the visible range, although there is a tiny amount under 
the curve towards the red end of the visible range, as indicated by the Red letter 
being the only one highlighted above the curve. This means that a campfi re releases 
 energy   that is overwhelmingly along the  infrared   and longer regions of the  spec-
trum  , with very little being visible. 

 Finally in part (c) the  radiation   emitted by mammals at room  temperature   around 
300 K is shown peaking at 10 μm and being completely outside the visible region 
of the  spectrum  . The curve only begins to deviate from zero  intensity   at about 4 μm, 
and the line representing the visible region is shown all the way on the left of the 

  Fig. 2.7    The  electromagnetic    spectrum   (credit  Argonne National Laboratory )—The diagram 
shows the visible part as well as those other regions that are invisible to us       
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  Fig. 2.8    ( a )  Radiation   emitted by the  Sun  , with an approximate  temperature   of 5778 K in absolute 
units. The  radiation   or amount of  energy   emitted peaks in the yellow of the visible part of the 
 spectrum  , but there is also  radiation   in the  ultraviolet   part (shorter  wavelengths  ), as well as in the 
 infrared   part (the longer  wavelengths  ). ( b ) Radiation emitted by a campfi re at around 1500 K, the 
 radiation   peaks beyond the visible part of the  spectrum   (in the  infrared  ). There is very little  radia-
tion   in the visible part, with most  radiation   in the  infrared   or heat part of the  spectrum  .
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graph. The fi gure explains why we are invisible in total darkness (none of the letters 
above the curve are highlighted), although we radiate quite a lot of  energy   in the 
 infrared   region. 

       Application   to Sound 

 Figure  2.9  shows the most commonly used  representation   of a wave; although as 
introduced in the second type of wave classifi cation,  longitudinal   waves are the 
result of  motions      different from the ones that the fi gure represents.

   Figure  2.10  represents the  vibrations   produced by a  tuning fork   where the sur-
rounding air turns into alternating bands of compression and  expansion  . The dark 
bands correspond to light dashed arrows denoting  maximum    Amplitude   of the wave 
 representation  , and the bright bands correspond to black dashed arrows indicating 

 Exercise 
 Use Fig.  2.8a  to explain why you shouldn’t look at the  sun   without eye protec-
tion during a total  eclipse   when the disk will be blocked and no visible  radia-
tion   gets to your eyes. 

Fig. 2.8 (continued) ( c ) Radiation emitted by mammals at around 300 K, which is roughly room 
 temperature  . This illustrates that particularly in the dark, most of the  radiation   we emit is in the 
 infrared   part, which makes us invisible unless light refl ects off our bodies         
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 minimum   values on the wave. Notice how the loss of  energy   is shown by the decreasing 
 intensity   of the bands corresponding to decreasing Amplitude of the wave.

   The  representation   of  longitudinal   waves, particularly sound, requires more 
detailed explanation since these differ from  transverse   waves. With  transverse   
waves, the  motion   of the  components   and their  representation   in terms of the list of 
fi ve properties above are similar. However, in the case of sound the  oscillations   of 
the air and their properties are different from the way waves were represented 
above. Figure  2.11  is an attempt to clarify these differences.

A

t

  Fig. 2.9    A sine wave (where the  oscillations   begin with zero  Amplitude   at the beginning) is com-
monly used to represent  oscillatory    motion  . The highest and lowest points represent the Amplitude, 
and the middle ( dashed line ) represents the points where the  oscillations   return to the  equilibrium  /
initial  position         

  Fig. 2.10    The fi gure is a  representation   of a  longitudinal   wave resulting from the  motion   of a  tun-
ing fork  . Once struck, its  vibrations   set the surrounding air in  motion   and there are regions where 
the air is compressed ( the dark bands ), as well as regions where the air expands ( the bright bands 
in between ). The sine curve underneath represents the alternative progression of the  movements  , 
indicating that as the  vibrations   spread out they lose  energy         
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   In general, the compression and  rarefaction   of  longitudinal   waves occur at the 
locations where the  medium    displacement   is zero, as can be seen from the graphs 
above. Therefore, we should be able to correlate the actual air  motions   and lack 
thereof, as well as the variations in air  pressure   to the wavelike  representation  , 
which looks like that of a  transverse   wave as well. The main difference is that while 
the  wavelength   can be obtained from the fi gure by using either the dotted double 
arrow for  pressure  , or the slashed double arrow for air  displacement  , the  Amplitude   
would have to be indicated differently than what the two graphs show. A larger 
Amplitude would consist of more dots (darker) in the regions of compression, and 
fewer ones (lighter) in the regions of  expansion   or  rarefaction  , as shown in Fig.  2.12 .

  Fig. 2.11    An expanded view of the air  motions   when sound waves propagate through it. The 
darker regions represent compression and the lighter ones represent  expansion   or  rarefaction  . Two 
graphs are used to indicate the variations in  pressure   and  displacement   or  movement   of the air. ± 
Pm and ±Sm represent the points of  maximum   value for both  pressure   and air  movement  . Note that 
when the air  movement   is greatest ( bottom graph ), the air  pressure   is zero ( top graph ). Additionally, 
as the air  movement   is in both directions they give rise to the compression and expansion; by con-
trast the pressure variation is from zero to a maximum value, even if shown as both positive and 
negative maxima          

 

 Application   to Sound
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   There are many other situations where  phenomena   can be described in terms of 
wave-like properties. One of the more common ones is the  motion      of a simple 
 pendulum   where its back-and-forth  movement   has such characteristics that they can 
be described with the properties listed above. The  motions   of buildings and bridges, 
of the ground in  seismic  , and of the air in weather-related  events   can also be under-
stood in terms of wave characteristics. 

 A structure like a bridge or a building can move in complicated ways, but its overall 
 motion   can often be described as that of an object obeying the rules of simple waves, 
with given properties like those described in this chapter. For example, the  period   ( T ) 
for a 10-story building is approximately 1/2 s. For the World Trade Center [1350 ft 
high] it was approximately 10 s, and the  Amplitude   of its  oscillations   (if you can believe 
that a structure like that would sway back and forth!) was about 3 ft at the top. 
Information like that can be very useful for analyzing and understanding their behavior, 
particularly when they vibrate under the effect of winds, and  earthquake   waves. 

  Fig. 2.12    A sound wave produced by the  loudspeaker   on the left of each diagram can be shown to 
have a given  frequency   and  wavelength  , and yet look different since the  Amplitude   changes. Note 
that the left diagram shows a fainter set of wave fronts as compared to the right one where they are 
darker and brighter, respectively, due to the wave having a larger Amplitude       

 Exercise 
 There are instances of people feeling sick in workplaces where machinery 
generate waves of  frequencies   that can interact with the body’s internal func-
tions. In the case of a building that oscillates back and forth when acted by 
external  vibrations   and waves such as high winds:

    (A)    Where would people feel the greatest effect of its swaying back and forth 
like a  pendulum  , at the lower or higher fl oors?   

   (B)    What property of a wave would that  motion   represent?   
   (C)    How comfortable would you feel living in a skyscraper knowing that in order to 

prevent the building from swaying too much under the effects of strong winds, 
an 800 ton weight is used in a special room near the top of the building?   

   (D)    In order to further explore the above situation read the article “Height 
Meets Heft” (The New York Times, Real Estate section. Sunday August 
9, 2015). What concepts from your understanding of waves do you fi nd 
discussed in the article?     
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  The last paragraph illustrates examples of a  phenomenon   particular to waves 
known as   resonance   . Objects that experience  vibrations   can oscillate with a variety 
of  frequencies  ; however, they tend to have a dominant or  resonant    frequency   that 
depends on a number of factors, such as their  length  , thickness, and other properties 
like their structural composition. Whenever an object is set in  motion   by a  force   that 
repeats its effect on the object  periodically  , if the  frequency   with which the  force   
changes matches the resonant  frequency   of the object, the  Amplitude  , and conse-
quently the  energy   of the  oscillations   will be at a  maximum  . Structures like build-
ings and bridges are protected by isolation points or  damping   features, from 
 vibrations   caused by external forces that can result in the structures themselves 
vibrating at their resonant  frequencies  . 

 Exploratory Task 
 The concept of  resonance   can be demonstrated by the use of the same  simula-
tion   that we used in previous tasks “Wave on a String” available at   http://phet.
colorado.edu/index.php    . 

 When a wave initially sent from the left (the rotating oscillator) refl ects 
from the Fixed End, we now have two waves interacting. With the  simulation   
open, make sure it looks like the diagram below. 

      

•      Click on Oscillate (after you select the required values for  Amplitude  , 
 Frequency  , and  Damping  , as well as high  tension     , and Fixed End) and 
observe the wave for 30 s. Stop the  simulation   and describe the situation.  

•   Choose “Loose End” and repeat, what do you observe?  
•   Finally change the  Amplitude   to 50, the  Damping   to 10, and go back to 

“Fixed End”. Run the  simulation   and describe what you observe.    

 Application   to Sound

http://phet.colorado.edu/index.php
http://phet.colorado.edu/index.php
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  The various characteristics and properties of waves introduced in this chapter 
can be used to practice and familiarize ourselves more with some of the real-world 
 applications   of concepts in light and sound. In terms of human  perception   there are 
two sets of ranges for which  phenomena   are both audible and visible. 

 For sound the range of audible  frequencies   is roughly (20–20,000) Hz, and for 
light the visible range is usually given in terms of  wavelengths  , roughly (400–
750) nm or (4.0–7.5) × 10 −7  m. There are of course other waves beyond those 
ranges, but they are not perceived by humans. These regions are respectively 
known as the  ultrasonic  (greater than 20,000 Hz),  infrasonic  (less than 20 Hz) for 
sound; correspondingly there is the   ultraviolet    (less than 4.0 × 10 −7  m) and   infra-
red    (greater than 7.5 × 10 −7  m) for light. The terminology doesn’t change for 
sound, but it does for light due to the different colors perceived at both extremes 
of the visible  spectrum  . 

 In general , ultra  means “above the human  perception   range” and  infra  means 
“below the human  perception   range.” Don’t be confused by the distinction between 
the ranges for sound and light; the term  ultra  is used not only for very large sound 
 frequencies  , but also for very short light  wavelengths   (which in turn correspond to 
very large light  frequencies  ). The same thing applies to the term  infra  when refer-
ring to very low values. This is an unfortunate result of the way the two ranges are 
usually described, with one in terms of  frequencies   and the other in terms of  wave-
lengths  . Nevertheless, there should be no confusion if you understand the  inverse   
 relationship   between  frequency   and  wavelength  . 

  Experimental   Task 
 Determine your heart rate or  pulse   (in beats per minute) by fi nding a place 
where it is easiest to measure, such as on your neck or at the wrist. Once 
found, count the number of beats in 1 min. What are:

    (A)    The  period       T  (Hint: divide the number of beats by 60 s)   
   (B)    The  frequency   ƒ   
   (C)    What do you hear when your head lies on a pillow and you feel  pressure   

changes against your ear that repeat themselves?     

2 General Characteristics of Waves
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 Activity 
 The following graphs represent the waves produced by the sound of a piano 
and an organ. 

      

         

      (1)    Can you predict from the graphs which instrument has a higher  frequency   
( pitch  )? How?   

   (2)    Determine the respective  periods   from each graph by dividing the total 
time by the number of waves (remember to use corresponding points to 
fi nd the completed  cycles   or waves).   

   (3)    Determine the respective  frequencies   from the  periods  .     

 Exploratory Task 
  Investigation of the    frequency        of    vibrations     and vibrating objects  

  (Using a    microphone     and an    interface     to display the    frequencies     of air  
  vibrations     and those of a glass container) . 

(continued)

 Application   to Sound



      

      Prediction    :  Draw a graph of what you think the  relationship   is between the 
 pitch   ( frequency  ) of  vibrations   and (a) changes in the  length   of the column of 
air in a glass container as you blow across its top, (b) changes in the amount 
of  water   poured into the container as you strike it with the eraser end of a 
pencil or some other soft object.

        

(continued)
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     NOTE: In both cases you may want to make the fi rst observation when the 
glass container is empty.  

  1. Air    Vibrations    
 In the fi rst part we investigate the  vibrations   produced by blowing across 

an air column and determining the  relationship   between the  length   of the col-
umn and the  frequency   of the  vibrations  . Use a glass container and pour a 
certain amount of  water   into it, blow across the top, and notice the  pitch   for 
each amount of  water      added; for each amount of  water   added, what  relation-
ship   do you determine between the height of the air column and the  pitch   of 
the sound produced when you blow across the top of the container? 

 Now repeat the activity, but use a  microphone   connected to the Lab Quest 
 interface   to measure the  frequency   for several  water   levels. Repeat until you 
get a “clean” display (the dominant  frequency  ) on the Lab Quest screen. Fill 
in the table and plot the  relationship   between the  frequency   and the air column 
( remember to subtract the height of    water     from the top of the container to 
determine the height ). 

 To get the  frequency      you must fi rst determine the  period   ( T ) of the  signals   
displayed on the Lab Quest/computer screen, then use ƒ = 1/ T  

  NOTE:  there should be around 10–11 peaks for a .03 s time range with an 
empty 100 ml graduated cylinder.

 Application   to Sound



   

Water 
level
(cm)

Air column 
height
(cm)

Frequency
(Hz)

  

    What do you notice from the table that resembles what you observed when you 
listened to the  pitch   as you added  water   to the glass bottle and blew across its top? 

  2. Glass    Vibrations    
 In the second part we investigate the  vibrations   of a glass container by 

varying the amount of  water   poured into it. For each trial pour an amount of 
 water   into the container, strike it gently but sharply with the eraser end of the 
pencil and notice the  pitch  , what do you observe between the  pitch   and the 
changes in the amount of  water     ? 

 Again, for each  water   level, strike the container with the rubber part—the 
eraser end of the pencil or soft object and determine the  frequency      of the 
 vibrations   with the  microphone  . Fill in the table and plot the data. ( In this case 
we don’t subtract the    water     level from the top of the container since the    vibra-
tions     are produced by the glass as it is fi lled with    water   .)

   

Water level
(cm)

Frequency
(Hz)

  

    What do you notice from the table that resembles what you observed when 
you listened to the  pitch   as you added  water   to the container? 

 Attach your graphs and a section where you compare the results of both 
activities, along with a discussion of similarities and  differences      between 
them. How do the graphs compare to your predicted ones? 
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        Scientifi c  Notation      

 We use  scientifi c    notation   to express very small and very large numbers; the idea is 
to keep track of the location of the decimal place. 

 To write 100 in  scientifi c    notation  , we realize that the decimal place is after the last 
zero, so we express the number or the base with an exponent or power that accounts 
for the number of places one has moved either to the left (positive exponent/power) or 
to the right (negative exponent/power). Hence 100 can be written as 1.0 × 10 2  since we 

have moved the decimal place twice to the left. Correspondingly,  
1

100  
  or 0.01 can be 

written as 1.0 × 10 −2  since we have moved the decimal place twice to the right. 
 Adding and subtracting numbers in  scientifi c    notation   can be made easier when 

they all have the same exponent or power; multiplying numbers in  scientifi c    nota-
tion   requires that the numbers/bases themselves be multiplied but the exponents/
powers be added; division requires the numbers to be divided but the exponent/
power in the denominator is subtracted from that in the numerator. 

      Units 

 We use the decimal/metric system of units where any of the  measurements   can be 
expressed in the respective units, as well as their fractions and multiples in terms of 
prefi xes (Table  2.1 ).      

 Exercises 
     1.    Add 1.3 × 10 3  to 3.7 × 10 4  (Hint: one of the numbers should be changed so 

that the  exponents     /powers are the same)   
   2.    (2.0 × 10 −2  – 3.0 × 10 −2 )   
   3.     (a)  (5.2 × 10 −3 ) (6.0 × 10 2 )  (b)  (2.0 × 10 5 ) (8.0 × 10 1 )   
   4.     (a)  5.0 × 10 4  / 2.5 × 10 3   (b)  9.0 × 10 −2 /4.0 × 10 −6      

   Table 2.1    Most commonly used units and  notation   in our study of wave properties   

  Length     Mass    Time   Frequency    Prefi x  Factor 
  Scientifi c   
 notation   

                        

 Pico  0.000000000001  1.0 × 10 −12  

  Meter   
(m) 

 Gram (g)   Second   
(s) 

  Hertz   
(Hz) 

 Nano  0.000000001  1.0 × 10 −9  
 Micro  0.000001  1.0 × 10 −6  
 Milli  0.001  1.0 × 10 −3  
  Centi    0.01  1.0 × 10 −2  
 Kilo  1000  1.0 × 10 3  
 Mega  1,000,000  1.0 × 10 6  
 Giga  1,000,000,000  1.0 × 10 9  
 Tera  1,000,000,000,000  1.0 × 10 12  

Units
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 Exploratory Task Using Both Light and Sound 

         

  Have you heard of the fi ve second rule when witnessing a thunderstorm? 
What do you think it means? 

 It has to do with predicting when  thunder   will occur once you have seen 
the  lightning   during a storm; have you noticed that one always sees the light-
ing before hearing the  thunder  ? 

 We can demonstrate it by using the considerable difference between the 
speed of light and that of sound. The speed of light is about a million times 
greater than that of sound (300 million meters/second, as opposed to roughly 
340 m/s); therefore, for light and sound travelling a given  distance   through the 
air, the time difference is in the order of a millionth of a second. 

 Sound travels through the air with an approximate speed value of 340 m/s, 
so in 1 s the sound produced by the  thunder   will travel about 340 m. Now, a 

mile is roughly 1600 m and  
1600

340

m

m  
  = 4.7 ≈ 5 which means that a mile is 

approximately 5 times longer than the  distance   sound travels in 1 s, 340 m. 
 Therefore, the fi ve (5) second rule states that when you see  lightning  , count 

to 5 s. If you hear the  thunder   before you fi nish counting, then the  lightning   
took place less than a mile away, and if the  thunder   is heard after you counted 
to 5 s the  lightning   took place farther than a mile away. 

  Task:  Try this next time you witness a thunderstorm (of course making 
your observations indoors), and determine how accurate the fi ve second rule 

(continued)
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is; make sure you repeat the observation several times to fi nd the shortest and 
longest distances where the  lightning   occurs during your observations. 

  Exercise  
 Suppose you see  lightning   strike the ground a mile away:

    (a)    How long does it take the light to reach you? 
  Hint:  Use the following 

 Speed ( v ) =  
Distance

Time

D

t

( )
( )  

  therefore solve for the time  t  =  
D

v  
  and use 

v =  c  = 3.0 × 10 8   
meters

second  
  

  c  is the symbol used for the speed of light through the air (which is an 
approximation anyway, but  works   reasonably well). The  distance    D  is 
1609 m (the equivalent to a mile).   

   (b)    How much quicker than sound is the time for light to reach you?     

Units
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    Chapter 3   
 Refl ection                     

          The  interaction   of  waves   with objects generally results in both  refl ection   and  absorp-
tion   depending on the types of objects the  waves   encounter. Similarly to what we 
saw in Chap.   2     when a  pulse   travelling through a rope or string reached its end and 
was in turn refl ected upside down or upright, depending on whether the end was 
fl exible or fi xed. 

 The objects chosen to explore the  refl ection   of waves are extended so that they 
appear as  surfaces  , and irregular or rough, as well as regular or smooth  surfaces   are 
considered; however, the more extensive  applications   are found in the case of 
smooth surfaces since in this case the waves remain fairly focused. In the case of 
 refl ection   from rough surfaces, the waves tend to disperse and scatter and so their 
study gets more complicated. 

    Refl ection of Light Waves 

 There are two types of  refl ection  : regular or  specular   refl ection   from smooth sur-
faces, and  diffuse  or irregular  refl ection   from rough surfaces. In order to consider 
both types we need to use a  model   of wave  propagation   that simplifi es the way they 
interact with surfaces. This  model   was fi rst developed by the Dutch physicist 
Christiaan Huygens in the seventeenth century. 

 Huygens’ principle can be demonstrated by the use of the concentric circles in 
Fig.  3.1b . The circles represent spreading wave fronts away from the source S in all 
directions. Huygens’ principle consists of the assumption that each point on a wave 
front in turn generates secondary wave fronts.

   Figure  3.2a  shows the wave fronts spreading from a single source; (b) shows 
those emanating from two sources; (c) shows the pattern produced by three sources, 
and (d) that produced by fi ve sources. Note that as the number of points increases the 
secondary wave fronts they generate become superimposed as they spread out, 
resulting in a pattern that will eventually become a continuous wave front when the 

http://dx.doi.org/10.1007/978-3-319-45758-1_2
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  Fig. 3.1    A  representation   of a source of  waves   such as the object that causes the ripples in ( a ) by 
falling on the still  water    surface  . In part ( b ) the perspective is that of a source S that radiates light 
in all directions as shown by the concentric circles surrounding it. In both cases the circles repre-
sent the ripples spreading out from the source       

  Fig. 3.2    Evolution of the contribution of secondary wave fronts to the formation of a pattern that 
propagates radially from a spherical  surface  . After a certain time the new pattern describes a  posi-
tion   of the wave front resulting from an infi nitely large number of  points  , as a surface tangent to 
the contributing secondary waves. That pattern (a new wave front) can then be replaced by a line 
that is always perpendicular to it       
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number of points becomes infi nitely large. This pattern, the dotted line in (d) is tan-
gent to the contributing secondary waves. Hence the  light   that  emanates   from a 
spherical surface can be represented by the arrow in (d) that will be everywhere 
perpendicular to the wave front (the tangent dashed line) created by the infi nite num-
ber of points lying on the surface; in other words, by a  ray  of light. This is illustrated 
in Fig.  3.3 , where the arrows represent rays of light emanating from the surface S.

    The  refl ection   of light from  surfaces   can now be strictly considered by regarding 
the light as propagating through the various  materials   in the form of rays. When a 
source such as the  sun   is used, the rays emanating from it are regarded as being 
parallel to each other (forming a beam), since the sun is considered to be infi nitely 
far away compared to the other  distances   involved. 

 This assumption can also be used for ordinary light sources, such as light bulbs, 
whenever they are suffi ciently far away from the objects and  surfaces   the light inter-
acts with. The fact that light appears to propagate ordinarily in straight lines (think 
search beams) confi rms such an assumption. 

 With the use of light rays, as shown in Fig.  3.4  we can tackle the many situations 
where light is refl ected from  surfaces  . As we said before, and as is shown in Fig.  3.5  
 refl ection   from  surfaces   that are very irregular or rough results in the refl ected light 
being dispersed, while  refl ection   from smooth or regular  surfaces   leads to a condi-
tion where a law can be stated. This is the  law of    refl ection   :  when a light ray strikes 
a smooth    surface    , the angle of incidence is equal to the angle of    refl ection    (both 
measured from an imaginary line, called the normal).

    Using the law of  refl ection   we can explore the properties of mirrors, we begin by 
looking at a plane mirror. 

  Fig. 3.3    Gradual  representation   of the spreading of light from a source S where the concentric 
circles (the wave fronts) are supplanted by  arrows  representing rays of light. Note that in ( a ) the 
rays are always perpendicular to the wave fronts, and that only a few rays are drawn as there are in 
principle an infi nite number of these. Using the convention we can visualize how light spreads 
from a source, such as a light bulb in ( b )       
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  Fig. 3.4    The use of rays greatly simplifi es the description of the way light interacts with objects 
and  surfaces  . In the fi gure, direct as well as refl ected sunlight can be represented by light rays       

Ray 2

(a) (b)

Ray 1

Normal

Ray 1

Ray 2

q1 q2

  Fig. 3.5    ( a ) Diffuse or irregular  refl ection  , ( b )  specular   or regular  refl ection  . In both cases the 
 arrows  pointing to the  surface   are called incident rays, and those pointing away from it are called 
refl ected rays. The law of  refl ection   applies only to ( b ) where the angles  θ  1  (called the angle of 
incidence) and  θ  2  (called the angle of  refl ection  ) are equal. Two rays are shown in ( b ) and the con-
dition is applied to Ray 1, but it also applies to Ray 2, in which case the angles measured would be 
different from those for Ray 1, but still would be equal to each other       

 Activity 
 The oldest type of  mirror   found in museum collections of ancient artifacts 
from the earliest civilizations was made of metal. If you shine a light source 
such as a fl ashlight on a metal cabinet and then shine it on a wall, you can see 
the difference in the refl ected light. Why do you see an image on the metal but 
not on the wall if the light is refl ected from both  surfaces  ? 
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      Plane Mirrors 

 Mirrors have been made for centuries by coating a glass surface with aluminum or 
silver. A plane mirror is the simplest type and we establish a few conditions so that 
we can investigate the properties of images produced by it. 

 Figure  3.6  illustrates the properties assigned to objects and images. All light rays 
originate at the object and they become the incident rays upon striking the mirror. 
The thin dashed lines perpendicular to the mirror represent the normal lines drawn 
at the points where the incident rays strike the mirror. The continued dashed lines 
are the projections of the refl ected rays behind the mirror. It is important to recog-
nize that only  solid   lines are considered to be real, dashed ones are not. As can be 
seen from the fi gure if one measures the  distance   from the mirror to the tip of the 
black arrow and to point P, plane mirrors have the unique properties that the object 
and image size or height, as well as their  distances   from the mirror, are always 
equal.

   In addition to the above properties, we always assume that the intersections 
formed by  solid   rays whether they emanate from an object or converge at an image 
result in real objects and images. In contrast to situations like the one at point P, the 
intersection of projected rays results in virtual objects and images. The deciding 
physical characteristic of real objects and images is that they can be projected onto 
a screen or other smooth  surface  , whereas virtual ones cannot; although they still 
exist in the sense of being perceived. 

  Fig. 3.6    A plane mirror showing two rays emanating from the tip of the  black arrow  drawn from 
point O that represents the object, with its height or  size   determined by the  length   of the arrow. 
Both rays obey the law of  refl ection  , although only one case is shown where the two angles  θ  1  and 
 θ  2  are equal. The two refl ected rays spread out, but their projections ( the continued dashed lines  
behind the mirror) appear to cross at point P where the image forms       

 

Plane Mirrors



 Conceptual Task 
 Using Fig.  3.6  to represent the  cabinet   mirror in your bathroom, with the 
arrow at 0 representing where you are in front of the mirror, when you look at 
your  refl ection   what do you notice about your  distance   from the mirror and 
the  distance   behind the mirror where your image appears? 

   The  quantitative   counterparts to the properties of a plane mirror are expressed as 
follows:

  
Di Do= =( )Image distance object distance

   

  
Hi Ho= =( )Image height or size object height or size .

   

  Experimental   Task 

      

       

               

    The diagram shows a garbage can  refl ected   on a plane mirror. If you were 
the person at (A) would you see the  refl ection   of the can on the mirror?

•    Place your fi nger on the top of the  refl ection   of the lid and mark it on the 
diagram; if you were to move from (A) to (B), where would you put your 
fi nger on the diagram now?  

(continued)

    



•   Use a plane  mirror   supported onto a piece of paper, draw a point (P) in 
front of the mirror, on the paper.

     

•       Draw two rays similar to those shown above on the paper, then draw the 
normal (the dashed lines) and measure the angles of incidence of both rays. 
Using the law of  refl ection  , draw the refl ected rays, and then their projections 
until these intersect behind the mirror to form the image of (P).  

•   As you move your head sideways while looking at the image of (P), does 
it change the  position  ?

     

       

       

•       If the person moved to  position      (C), would she still be able to see an image 
of the can?    
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   Plane mirrors have a unique property that is often misunderstood; as Fig.  3.7  
shows, there is a change between the object and its  refl ection   (the image). However, 
the change isn’t in the direction of the orientation, it is in the sense that the front of 
the image is the back of the object. There are objects and patterns, among them 
some letters and numbers that will indeed show a reversal in the direction upon 

  Fig. 3.7    The  refl ection   of the plastic bottle exhibits a well-known but often misunderstood prop-
erty of plane mirrors. The orientation is unchanged since the handle appears on the left side of both 
the object and its image; what changes is the front-to-back perspective. The back of the object 
appears as the front of the image       

  Fig. 3.8    Placing three plane mirrors at right angles to each other will produce a number of  refl ec-
tions   of the single object placed in front of them       
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 Activity 
 A person stands in front of a plane mirror whose size only allows her to see 
her image from the waist up.

     

       

    Is there a way that the person can move so that her whole body can be seen 
on the mirror? 

 Now try it yourself with a mirror where you can only see the top half your 
body refl ected, and compare your experience with your  prediction  . 

 refl ection   from a plane mirror, but that is a property known as  symmetry   that will be 
explored later in the book. Nevertheless, the presumed change in orientation 
attributed to  all   objects   refl ected from a plane mirror is a  misconception   arising 
from experience often lacking in  refl ection  .

   A combination of plane mirrors has many interesting  applications   in the creation 
of  illusions   and changes in perspective. Placing mirrors at certain angles gives rise 
to a variable number of images, depending on the angle between the mirrors, as 
Fig.  3.8  illustrates.

Plane Mirrors
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 Conceptual Task 
 Double-sided mirrors used for makeup  applications   have a very distinctive 
property when you compare the  refl ections   from both sides, what is it? 

        Curved Mirrors 

 A  concave  mirror is  constructed   with the silvered  surface   of the mirror on the inner, 
or concave, side of the curve. A plane mirror is essentially a special case of a more 
general type of refl ective surface, that of a curved mirror. The difference in perspec-
tive is that if one stands very close to a large curved mirror, its curvature may not be 
apparent and its surface approximates that of a plane  mirror  . However, there are 
some defi nite differences between the images produced by both types of mirrors. 

   The fi rst type of curved mirror we investigate is a concave mirror, as shown in 
Fig.  3.9 .

   Figure  3.9  shows that all incident rays in this case are refl ected through F (the 
focal point). This is true for mirrors as well as for satellite dishes, where the antenna 
will be located at the focal point. Concave mirrors are also called  converging  since 
all rays coming from far away converge at the focal point upon  refl ection  . We shall 
regard all values of  Do ,  Di , and  f  as positive when these locations are in front of the 
mirror, and negative when they appear behind it. There are potentially an infi nite 
number of rays emanating from all points on the  surface   of an object that either radi-
ates or refl ects light. At this point we shall introduce three rules as shown in Fig.  3.10  
that enable us to locate the images formed by mirrors, all rays are assumed to be 
coming from radiant objects (whether producing or refl ecting light):

   The dashed lines are the normal lines or  radius   of curvature of the mirror, showing 
that the law of  refl ection   is obeyed (the angle of incidence = the angle of  refl ection  ). 

 We can always add any other ray that obeys the law of  refl ection  , provided that 
we draw the normal to the  surface   (the  radius  ) so that the angles of incidence and 
 refl ection   are equal. 

 As long as we have at least two refl ected rays that intersect, it will be enough to 
locate the image. 

 We now introduce the  equations      needed to provide the  quantitative   description of 
the properties of mirrors (which will be the same for lenses later).

   
f

R
=

2   
 ( 3.1 ) 

   

    

1 1 1

f Do Di
= +

  
 ( 3.2 ) 

   

  
M

Di

Do

Hi

Ho
= - =

  
 ( 3.3 ) 
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  Fig. 3.9    A concave  mirror   showing rays coming from an object on the left infi nitely far away so 
that its rays are parallel, and two points; the center of curvature of the mirror (C) where the dashed 
line, the  radius   begins, and the focal point (F) halfway between the center and the mirror. The hori-
zontal darker line on which the center and focal point are located is called the principal axis. The 
 distance   between the mirror and the focal point (F) is called the focal  length   ( f )       

  Fig. 3.10    Illustration of 
the three rules for ray 
 refl ection  . 1. A ray incident 
parallel to the principal 
axis is refl ected through 
the focal point. 2. An 
incident ray through the 
focal point is refl ected 
parallel to the principal 
axis. 3. An incident ray 
through the center of 
curvature is refl ected back 
through (C)       

The variables in the  equations   have all been introduced except for  M  which stands 
for the lateral magnifi cation, which is taken to be negative when the image is 
inverted (upside down) as compared to the object. Magnifi cation doesn’t mean that 
it is always larger, it could sometimes be smaller than 1, in which case the image 
will be smaller/shorter than the object. 

 Since the equations apply to both plane and curved mirrors, we can see that for 
a plane mirror  M =  1 since the image and object  distances   are the same, as well as 
the image and object sizes or heights. Note that the only way for  M  to be 1 is for 
 Di  to be negative, which makes sense since as we saw the image produced by a 
plane mirror is always behind the mirror. In addition, the  radius   of curvature for a 
plane mirror is infi nitesimally large, thus with  R  = ∞,  f  = ∞ and if we substitute this 
into Eq. ( 3.2 ):

  

1
0

1 1
0

¥
= = + =

Do Di   
 ( 3.4 ) 

   

 

 

Curved Mirrors



Hence  Di  = − Do  (the image  distance   will always be equal to, but negative as com-
pared to the object  distance  . That is why the image is considered to be virtual, or 
appearing to form on the other side of the mirror. 

 We can now explore the various cases where a concave mirror exhibits interest-
ing properties, all depending on the object’s  distance     , as shown in Fig.  3.11 .

   In the fi rst three cases an image is produced (the inverted arrow) that is real, but 
that is smaller in (a), equal in size/height in (b), and larger in (c). There is no image 
in (d) since the refl ected rays are parallel (they never intersect), and the image is 
virtual, larger, and upright in (d). In the last case the arrow indicates an image but 
the lines that intersect aren’t  solid   since they are projections, not real rays. 

  Fig. 3.11    Cases where in ( a )  Do  > 2 f , ( b )  Do  = 2 f , ( c ) 2 f  >  Do  >  f , ( d )  Do  =  f , ( e )  Do  <  f        

 Problem 

      

•      According to the diagram, what condition of Fig.  3.10  is being 
represented?  

•   What two rays are drawn?  
•   Using  Eqs  . ( 3.1 ) and ( 3.2 ), where is the location of the object if the image 

is located 20 cm in front of a 30 cm  radius   mirror?    

(continued)

 



  Experimental   Tasks 
  (1) Comparing a Plane and a Concave Mirror 

     

     Procedure  
 Place a plane and a concave mirror side by side (makeup mirrors are suit-

able since one side is concave to magnify features). They don’t have to be as 
large as those shown in the fi gure, but they should be comparable in size. 
Make sure you have a large refl ective  surface      opposite to them (such as a 
blank wall) on which to see the images produced.

•    Dim the room lights or turn them off, turn on and place a small fl ashlight 
or other bright light source in front of each mirror. Describe what you see 
as you illuminate each mirror; what is the difference?  

•   With the  lights   back on, stand facing both mirrors and describe what you 
see on each as you move slowly away from them.  

•   Use the terminology and  equations   introduced to explain what you have 
observed.  

•   Given what you have observed, where is the focal  point   of the plane mirror?    

  (2) Using a Concave Mirror  
  Procedure  
 1. We fi rst determine the mirror’s focal  length  ; this will be done in two 

ways:

    (A)    Focus on a distant object (as in Fig.  3.9 ) by moving the screen until its 
 image   appears sharp on it. Record the  distance   the screen is from the 
mirror. 

 Use  
1 1 1

ƒ Do Di
= +

 
  where  Do  ≈ ∞ (the object is infi nitely far away 

compared to the image  distance  ), to solve for the image  distance   ( Di ) 
which is in this case equal to the focal  length   ( ƒ ); Hence  Di  =  f . 

(continued)
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  Fig. 3.12    A convex  mirror   always displays the same type of image, regardless of the  position   of 
the object. In ( a ) the two projections of the refl ected rays ( the dashed lines ) intersect to produce a 
virtual, upright, and smaller image. The most general  application   of convex mirrors ( b ) is to gather 
a large  fi eld   of view into a much smaller image       

  Focal    length     of mirror = (I)    

   (B)    Use a light source as the object and place it at a point so that you can 
fi nd its image on the screen. Record both  distances  , the object’s and the 
screen’s from the mirror. Then use 

  
1 1 1

ƒ Do Di
= +    

 But this  time   we solve for  f  since we know both  Do  and  Di  
  focal Length of mirror = (II)  
 You should average the two results (I) and (II) 
  Average value of mirror’s focal    length     =      

    A  convex  mirror is  constructed   with the silvered  surface   of the mirror on the outer, or 
convex, side of the curve. In this case the focal  length   and the image  distance   are always 
negative, and therefore virtual. Instead of the fi ve cases we saw for a concave mirror, a 
convex one exhibits a single case, as illustrated in the fi gure below. Convex mirrors are 
also called  diverging  since the refl ected rays spread in different directions. 

 As Fig.  3.12  shows a convex mirror has an important characteristic that is useful 
for many  applications  . It allows for the creation of images that can be reproduced in 
small areas. The objects in the  fi eld   of view can be large in number, and spread out 
over large areas as well.
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     The rules for image formation by mirrors have limitations since there are circum-
stances where images will appear blurred. Parallel incident rays that are far from the 
principal axis converge to other points besides the focal point, and other light rays 
make large angles with the principal axis. The result is an effect called  spherical 
aberration , where the extended image doesn’t form at a single point.  

     Application   to Sound 

 We now look at the  refl ection   of  sound   waves, where by contrast very often the 
more interesting  applications   are from  refl ections   that occur from irregular or rough 
 surfaces  , not from smooth ones. The simplest case is that of the production of an 
 echo  , as sound is refl ected from a large and fairly smooth surface. 

 The main application is in the determination of the acoustic properties of per-
forming  spaces   like concert halls, auditoriums, lecture halls, and even churches and 
libraries. The property measured is the perceived  intensity   or  loudness   of a sound 
specifi cally created in the chosen  space  , and how long it takes for it to decrease until 
it blends in with other ambient sounds or background  noise  . This change in  loudness   
is called  reverberation . The more refl ective the surface, the longer the produced 
sound remains in the air, and so the longer the reverberation time. Highly absorbing 
 surfaces   will yield a short reverberation time since the  loudness   of the sound pro-
duced will decay quickly. 

 The convention is to measure the time that it takes for a sound produced at a 
certain  loudness   to decay by 60 dB. This concept (and its units) will be introduced 
and explained in a later chapter, but it shouldn’t prevent one from completing the 
task; dB are simply convenient units used for sound level measurements. This is 
often quite diffi cult to achieve due to the challenge of fi nding  spaces   where the 
ambient sound level is lower than 50 dB. Creating a  maximum    loudness   of approx-
imately 120 dB requires creativity and a powerful device. The ideal  spaces   tend to 
be those that are very quiet, although ventilation/heating systems can produce 
ambient  loudness   levels that can confound the results. The following fi gure illus-
trates a way in which the reverberation time can be determined in a  room   where the 
 maximum    loudness   can be around 120 dB. Even if the background  noise   is signifi -
cant, all one needs is a decrease of 60 dB, to measure the reverberation time; in this 
case it is about 3 s (Fig.  3.13 ).

 Activity 
 Consider the mirrors used in automobiles for various purposes. There are reasons 
for two plane mirrors (the driver’s side and rear view), and the passenger’s 
side  mirror  . Why is there a warning on the passenger’s side mirror, but not on 
the others? 

Application to Sound
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   The  experimental    determination   of the reverberation time can be compared to a 
formula that takes into account the  volume   of the room, and the types of  materials   
making up all  surfaces   upon which the sound refl ects. The optimum reverberation 
time for an auditorium or room of course depends upon its intended use. For music 
and speech reproduction rooms the range is typically between 1.5 and 2.5 s. A class-
room should be much shorter, less than a second, and a recording studio should 
minimize reverberation time in most cases for clarity of recording. 

 The reverberation time is strongly infl uenced by the  absorption   properties, 
known as coeffi cients of the  surfaces   enclosing a room. The larger the room, the 
longer one would expect the sound to remain in it if the  surfaces   are not particularly 
rough or irregular; as a rule one should not expect to get a long reverberation time 
with a small room.    

  Fig. 3.13     Measurement   of the sound changes in a room where readings were taken with a 
Sound Level  Meter  . Notice that the reverberation time is approximately 3 s (the time for the 
sound  intensity   to decay by 60 dB)       
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Chapter 4
Refraction

Conceptual Task
If you put a pencil half way inside a glass filled with water, what do you 
notice?

Virtual Experiment
The activity can be accessed at https://phet.colorado.edu/sims/html/bending- 
light/latest/bending-light_en.html.

Make sure the screen looks like the figure below

 

Change the material in the bottom half of the figure to water and then to 
glass, describe what you see in each case.

https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html
https://phet.colorado.edu/sims/html/bending-light/latest/bending-light_en.html
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 What is Refraction?

Refraction is the bending of waves as they go from one material or medium into 
another. As we have previously stated, when waves travelling through a transparent 
medium encounter a boundary between that medium and another, they are generally 
partly reflected and partly transmitted or absorbed. When waves travel from one 
medium into another, their amplitude, wavelength, and speed will change, but not 
their frequency. The direction of the bending depends on the difference between the 
materials. Figure 4.1 shows the changes in direction of waves as they are refracted.

We begin by defining a property of materials known as the index of refraction. It 
is the ratio of the speed of light through a vacuum to its speed through the material, 
as stated by Eq. (4.1).

 
n

c

v
=

 
(4.1)

Task

 

In the diagram the spacing between wave fronts can be used to describe the 
wavelength; using the formula v = λƒ and remembering that upon entering a 
new medium the frequency of a wave doesn’t change, what can one say about 
the speed of the wave in the medium (the lower part) where the bending 
occurred?

4 Refraction
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As a reference we take the index of refraction of air to be n = 1, which states that the 
speed of light is the same through a vacuum as it is through the air. This is of course 
an approximation, since the speed of light is taken to be 300,000 km/s through a 
vacuum, and it is known to slow down by about 70 km every second as it travels 
through air. However, 70 compared to 300,000 is insignificant for our purposes, and 
so we take both speeds to be the same.

As a general rule we state that when light enters a medium of higher index of 
refraction, the rays bend toward the normal, and when entering a medium of lower 
index they bend away from the normal. How much is the bending? It can be 
 determined by the use of Snell’s law, after Willebrord Snell who proposed such 
description in the early part of the seventeenth century.

 n n1 1 2 2sin sinq q=  (4.2)

In Eq. (4.2) n1 and θ1 are the index of refraction and angle of incidence in the first 
medium; n2 and θ2 are those in the second medium.

 Examples

1. A light ray travelling through air strikes a glass surface at an angle of 40°, what 
is the angle of refraction of the ray in the glass?

For air n = 1, for glass n = 1.5.

Fig. 4.1 Representation of 
wave fronts and 
corresponding rays as a 
wave enters a different 
medium than the one 
through which it has been 
initially travelling; the 
change in the direction 
indicates a more refractive 
medium than the original 
one

What is Refraction?
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Figure 4.2 shows the incident ray and angle of incidence, measured from the 
normal; it also shows that the ray does not continue straight since it enters the glass, 
which has a higher index of refraction.

Using Snell’s law:

 n n1 1 2 2sin sinq q=  

 
1 40 1 5 2( ) =( )sin . sin° q
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°
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The angle that the arrow makes with the normal in the glass is 25.4°.
2. Suppose now that a light ray has been travelling through glass and it strikes a 

glass–air interface at an angle of 30°. What is the angle at which the ray emerges in 
the air?

Figure 4.3 shows the situation; in this case

 
n n1 1 2 2sin sinq q=  
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°therefore

 

The angle that the arrow makes with the normal in air is 48.6°, and that is why the 
ray bends away from the normal instead of emerging as the dashed line indicates.

40°

Glass

Fig. 4.2 Illustration of a 
case where light goes from 
air into glass

Glass
30°

Fig. 4.3 Illustration of the 
reverse case where light 
goes from glass into air
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3. If instead of glass a light ray strikes an air–water interface at an angle of 40°, 
what is the angle of refraction in water (n = 1.33)?

 Total Internal Reflection

There is a special case when light that has been travelling through a medium encoun-
ters an interface between the medium and another, the latter one having a smaller 
index of refraction. Upon striking the interface, the angle of incidence will have an 
upper limit beyond which something interesting happens.

Figure 4.5 shows the situation in detail. In part (a) both rays (1) and (2) will 
emerge refracted away from the normal at the glass–air interface. For ray (3), Snell’s 
law states that

 n n1 1 2 2sin sinq q=  

Activity
We see objects under water as long as there is light reflected from them to 
reach our eyes. However, there is a distortion of the way they look. Using 
Fig. 4.4 explain how the reflected ray that the person sees (2) appears to be 
coming from the position where the fish seems to be (B), rather than from 
where it really is (A). Use the result from Example 3, along with the letters 

and numbers shown, as part of your description.

Fig. 4.4 Illustration of a person looking into water and seeing a submerged object (the fish) at a 
depth different from where it really is

Total Internal Reflection
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As shown in the figure, n1 is the index of refraction of glass, and θ2 will be 90°. 
Since sine of 90° is 1, and n2 = 1, then θ2 becomes the critical angle θc. Therefore,

Sin θc = 
1

1n
, which means that in general, when light has been travelling through 

a medium and upon striking an interface with another medium of lower index of 
refraction (in this case air), the angle of incidence becomes the critical angle when 
the refracted ray travels along the interface. Any higher angle of incidence will 
result in the rays no longer refracting but being internally reflected. The successive 
angles of incidence will result in the ray travelling down the medium. Figure 4.5b 
shows the most obvious application, that in fiber optics for telecommunications.

Exercise
What material has a higher critical angle, water or glass?

Use nwater = 1.33 and nglass = 1.52

For water: Sin θc = 
1

n
 = 

1

1 33.
 = 0.751, and so θc = 48.7°

(Repeat for glass and then compare the angles).

Fig. 4.5 Demonstration of total internal reflection. In (a) rays (1) and (2) are incident on the glass–
air interface. Since glass has a higher index of refraction than air, the refracted rays will bend away 
from the normal, as shown by the two top arrows in air. For ray (3) the refracted angle will be 90°, 
and it is shown as the thicker arrow drawn parallel to the glass–air interface. Ray (4) exceeds the 
critical angle and so it is reflected (4’). In (b) we can see that the laser light travels along the plastic 
fiber since the initial direction of the light as it enters the fiber is such that the angle of incidence at 
every instance will exceed the critical angle

4 Refraction
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Exploratory Task

 

In the accompanying figure a battery is shown refracted by a glass prism.

 1. Why are there two images produced?
 2. Draw rays that can be used to construct the formation of those images.

 

 Properties of Lenses

We now turn our attention to the investigation of the properties of lenses, and their appli-
cations. As in the case with mirrors, we make a distinction between converging and 
diverging lenses; except that the types are reversed. In other words, the images produced 
are the same for converging mirrors and lenses, but a converging mirror is concave, 
whereas the corresponding lens is convex. Similarly, the image is the same for a diverg-
ing mirror, as it is for a diverging lens, but a diverging mirror is convex, whereas a 
diverging lens is concave. This is due to the curvatures of the surfaces upon which the 
rays are incident from the objects. In addition, a lens has two focal points since there are 
two surfaces of specific curvature that contribute to the image formation.

Properties of Lenses
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Figure 5.6 corresponds to the one used in the previous chapter to represent a 
concave/converging mirror, where all rays are coming from an object far away so 
that they are parallel, and thus converge at the focal point. In the case of a convex/
converging lens, the parallel rays are refracted through the second focal point (the 
one at the far side of the lens) (Fig. 4.6).

The same formulas apply as with mirrors, but the criteria for rays are slightly changed:

 1. An incident ray parallel to the principal axis is refracted through the second focal 
point (F2).

 2. An incident ray through the first focal point is refracted parallel to the principal axis.
 3. An incident ray through the optical center (instead of the center of curvature) 

does not undergo refraction; in other words, it goes straight through the lens 
without changing direction.

In the first three cases shown in Fig. 4.7 an image is produced (the inverted arrow) 
that is real, but that is smaller in (a), equal in size/height in (b), and larger in (c). 
There is no image in (d) since the refracted rays are parallel (they never intersect), 

Fig. 4.7 Cases where in (a) Do > 2f, (b) Do = 2f, (c) 2f > Do > f, (d) Do = f, (e) Do < f. The thickness 
of the arrow representing the image varies as the length does, which happens for (a), (b), and (c)

Fig. 4.6 Representation of the convergence of rays to form an image by a convex/converging lens. 
The arrows indicate the location of the first and second focal points, as well as the optical center 
(which replaces the center of curvature for a mirror)

F1 F2

4 Refraction
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Fig. 4.8 Fig. 4.7(e) is worth showing in more detail, as it represents a very important application 
of the use of a convex lens, that of a magnifying glass. Note that the eye is shown at the location 
where one would have to be, to see the image (the larger arrow) produced by the object (the short 
arrow) when it is closer to the mirror than one of its focal points (F1)

Exercise

 

 (A)  In the accompanying figure, draw the missing ray coming from the object 
and refracting in such a way as to intersect the other ray and form the 
image shown.

 (B) Which of the three rules does that ray follow?

 (C) Use the lens equation 
1 1 1

f Do Di
= =

to find the image distance (Di), if the object is located at 18 cm (Do), 
and the focal points are at 10 cm (f)?

 (D) Does the numerical answer confirm the location of the image in the 
diagram?

and the image is virtual, larger, and upright in (d). In the last case the arrow indicates 
an image but the lines that intersect aren’t solid since they are projections, not real 
rays.

Figure 4.8 is a detailed illustration of the last case (e) in Fig. 4.7 in the case where 
an object is located closer to the lens than the focal point.

(continued)
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Exploratory Task

  

 

Part (a) shows an object (the inverted letter A) located such that 2f > Do > f; 
two rays originate at the vertex and intersect at a corresponding point to pro-
duce the image. In part (b) the lens is half-covered with a dark material.

 1. What two rules are followed by the rays in part (a)?
 2. Is it possible for an image to form in part (b)?
 3. If you think an image can be formed, provide evidence by drawing any two 

rays that can intersect to form it.

A Concave/diverging lens is constructed with the curvature of the refracting sur-
faces reversed from that of a convex lens.

Figure 4.9 shows that the image produced by a concave lens is like that produced 
by a convex mirror. It is important to notice that when applying the rules for the 
refracted rays, the one incident parallel to the principal axis is now refracted through 
F2 instead of F1 as with a convex lens. In both cases the image is perceived to be 
located on the same side of the lens/mirror as the object, and it has the same charac-
teristics regardless of the position of the object. All three rays are drawn in Fig. 4.9a 
to show how the image forms.

4 Refraction
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In the above diagram

 (a) What two rays are shown to form the image?
 (b) Why are the incident rays parallel to the principal axis refracted through 

F1 instead of through F2 as was the case with a convex lens?

 (c) Use the lens equation 
1 1 1

f Do Di
= =  to determine the location of the 

image (Di) if the lens has a focal length of 20 cm, and the object is located 
at 80 cm.

 (d) Is there something contradictory between your answer to c) and the location 
of the image in the diagram?

(a) (b)

Fig. 4.9 Image produced by a concave lens (a). A concave lens produces an image that like that 
of a convex mirror is always smaller than the object, upright, and virtual. The comparison between 
the virtual images produced by a convex and a concave lens is shown in (b). In both cases the eye 
perceives a virtual image even though it cannot be projected onto a screen; the difference is in the 
size of the image
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Fig. 4.10 Illustration of the basic structure of the human eye

As pointed out in Chap. 3 parallel incident rays that are far from the principal 
axis converge to other points besides the focal point, and other light rays make large 
angles with the principal axis, thus producing a blurred image. A similar situation 
occurs with lenses, where the result is an effect called chromatic aberration; again, 
the extended image doesn’t form at a single point. This last observation leads 
directly to a very important application of lenses, where vision problems arise due 
to conditions related to these so-called aberrations.

 Applications of Lenses

The human eye has a structure that contains parts that behave in a similar way to 
mirrors and lenses. Vision problems have been corrected for centuries with the use 
of lenses, and modern interventions such as laser surgery continue to improve the 
treatment of vision afflictions.

Figure 4.10 shows a diagram of the basic structure of the human eye. The main 
parts of the eye that concern us are the cornea, the aqueous humor, the lens, the 
retina, and the optic nerve. As the diagram indicates, the cornea, the aqueous humor, 
and the lens appear to have properties similar to those of lenses. Vision issues 
related to these parts can be corrected according to the needed refraction properties 
associated with lenses, whether the corrections are accomplished with eyeglasses, 
contact lenses, or laser surgery. In such cases the curvature and index of refraction 
of the visual aids can be manipulated accordingly.

4 Refraction
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The two most common vision problems involving the eye’s ability to focus on 
objects can be corrected with convex and concave lenses, as well as with changes in 
the index of refraction. Myopia or near-sightedness is the inability to focus on dis-
tant objects results from images forming in front of the retina, and is due to the 
index/curvature of those parts that contribute to image formation. In this case the 
afflicted person needs to move distant objects closer to the face to be able to focus 
on them. Hyperopia or far-sightedness is the opposite case, where the image forms 
behind the retina and so the person needs to move near or proximate objects farther 
away to be able to focus on them.

Conceptual Task
Knowing the reasons for both Myopia and Hyperopia, using the lens of the 
eye draw two rays coming from the object and forming an image in front of 
the retina in (a), and behind the retina in (b).

What kind of lens can correct each of them? Explain.

 

  

(continued)
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The next activity is based entirely on the role played by the retina and the optic 
nerve, in terms of the reflective properties associated with mirrors.

 

Experimental Activity
Blind Spot Properties

Background
Each eye has a surprisingly large blind area, which is about 4° of the visual 

angle, roughly the width across your four fingers held at arm’s length. 
Fortunately for us, they are in different locations in each eye, the one in the 
left eye is about 10° (two hand widths at arm’s length) to the left of the central 
visual region, and the one in the right eye, an equivalent distance on the other 
side. Amazingly, we are normally unaware of these natural blind spots. They 
are either filled in perceptually (a remarkable phenomenon) or they are 
ignored and so not seen. These are very different possibilities for explaining 
why the eyes’ blind spots are not generally seen or noticed, even when one 
eye is covered.

Examples of effects related to the blind spot

 

(continued)
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To get an idea of what the blind spot looks like, and what it does, look at 
each case above with your right eye closed. (1) Tilt the page until the + 
becomes an x; as you move your head away/towards the page, what do you 
notice happening to the top figure? (2) Keep the page vertical (without any 
tilt) and repeat; describe what you see in the lower figure. In this activity we 
explore two features of the blind spot:

 (1) Variation of distance where the spot disappears from the surface (wall) as 
a function of distance between the spot and a reference (+) position. Is it 
symmetrical for both eyes? Suggestion: two sets of paper/index cards 
should be made, one with (+) on the left (as shown), and one with (+) on 
the right (for the left eye, with the right one closed).

 (2) Variation of blind spot size (diameter) measured between the two points 
where the spot disappears and then reappears, as a function of distance 
from the surface where this takes place (wall).

(1) Reference

 

 

(continued)
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Distance between
spot and reference

d (cm) 

Distance from surface where spot 
disappears D (cm)

Left Eye Right Eye

 

(continued)
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(2)   

 

 

(continued)
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Distance from surface
(wall) d (cm) 

Size of blind spot 
D (cm)

 

Plot the data from the tables, D (vertical) vs d (horizontal) in both cases.
Note: Only one graph is needed from the first part, either the left or the 

right eye data.
Examples of Data Graphs

 

(continued)
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Graph of a sample data collection for the first table

 

Graph of a sample data collection for the second table
Reflections

• Do the data look symmetrical (roughly the same distances) for the left and 
right eye in the first table? Explain.

• Compare your graphs with the ones included, and discuss the sources of 
error in this experiment.

• Consider the situation of an animal that has only monocular vision (one 
eye on each side of the head) in terms of the second graph. What does the 
relationship found between the size of the blind spot and the distance to 
where it is suggest that such animals must be attentive to?

• How can you relate your conclusion to the animal’s behavior, particularly 
when they are eating?

Experimental Task
Snell’s Law, Refraction, and Total Internal Reflection

We explore the properties of refraction and use these to determine the indi-
ces of refraction for glass and water, as well as the critical angle for which 
total internal reflection occurs.

(continued)
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Part I. Refraction

 

Place a flat piece of glass onto a sheet of white paper so that it looks like 
the figure above.

1. Place two pins to form a ray and view them by looking through the 
glass so that they appear as one, this way you can create a ray that is refracted 
(shifted) as you view the pins through the glass, and compare the view with 
that through air. Put a third pin at the point where you see the refracted ray 
emerging from the glass, on the other side of where the pins are initially 
placed.

2. Connect the line that makes the incident ray at the point it hits the glass, 
to the third pin on the other face, so that you can reconstruct the ray as it trav-
els through the glass.

3. Measure the angle of refraction (from the normal to the ray made by the 
line connecting pins 2 and 3).

(continued)

4 Refraction
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4. Fill in the table below as you change the angle of incidence.

Angle of Incidence

(θi)

Angle of refraction

(θr)

Sin θi Sin θr

10°

20°

30°

40°

50°

60°  

5. Plot the data so that the values for Sin θr are along the x-axis (the hori-
zontal), and those of Sin θi are along the vertical.

6. Determine the slope of the line formed by the points.
7. Repeat the procedure using the semicircular container shown below. The 

difference now is that the container is filled with water.

Normal

 

Place the container onto polar graph paper so that the angles can easily be 
read off itit; otherwise, a protractor must be used to measure angles if plane 
paper is used. Outline the rays as you did with the glass plate by using the pins. 
Vary the angle of incidence as before and record the data on the following table:

(continued)
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Angle of Incidence

(θi)

Angle of refraction

(θr)

Sin θi Sin θr

10°

20°

30°

40°

50°

60°  

8. Upon determining the slopes of both graphs (the one constructed for 
glass and that for water), compare their values with the indices of refraction 
of each substance, respectively.

Part II. Total Internal Reflection
1. For this part we use a laser (be very careful not to point it at anyone’s face!). 
Using the same semicircular container, place it upside down so that the inci-
dent laser ray strikes the curved surface, and upon entering the water does not 
bend since it will always strike the container along the normal (the radius of 
the circular surface).

2. Vary the angle of incidence until the transmitted ray is reflected at the 
flat surface. When that happens, record the value of that angle to determine 
the critical angle for total internal reflection in water. The situation is depicted 

(continued)

4 Refraction
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in the figure below, (a) shows the way the rays enter on the curved surface, 
and (b) what the reflection should look like at the bottom face when the angle 
is the critical angle.

(a)

 

(b)

 

3. Determine the experimental critical angle twice and find its average, com-
pare the experimentally determined critical angle to that predicted by theory 
using

Sin c c Sinq q= ® = -1 1

n
 (
1

n
) where n is the index of refraction of water 

(1.33).

4. Determine the percent error by using

 
%

. exp.

.
error

cTh c

cTh
=

-
´

q q
q

100
 

The % error is the absolute value of the difference between the theoretical 
value θ c above using n = 1.33, and the experimental value of the measured 
angle. This difference is then divided by the theoretical value, and then multi-
plied by 100.

Critical angle

(qc exp)

Critical angle % error

(qcTh)
 

Reflections
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 Application to Sound

The refractive properties of sound waves that we shall consider have applications in 
medicine as diagnostic tools, in echolocation, and in outdoor activities, as sound 
propagates through media where its speed exhibits variable properties. Figure 4.11 
shows a situation that may be familiar to you. It is included to encourage you to 
explore an application.

Figure 4.12 serves as an explanation for Fig. 4.11 and illustrates the case where 
sound is refracted as it travels through the air, due to the change in direction result-
ing from the fact that the speed of sound depends on the temperature of the air. The 
left side illustrates what happens as a source on the surface produces sound and it 
propagates through the air. A listener (a) at the same level as the source will hear the 
direct sound represented by the arrows closer to the ground on either side. (b) indi-
cates that the listener hears additional sound produced by the contributions of the 
higher layers of air, whenever there is a temperature inversion.

Normally the surface would be radiating heat and as the height above it increases, 
the temperature decreases. However, during temperature inversions, such as when 
the air over a lake in the early morning is being heated by the sun, the reverse will 
take place; namely, the temperature will be lower over the surface of the water than 
in layers above it. The result is that sound will propagate faster in the warmer layers 
than in the cooler ones, and so when sound emanates from a source there will be a 
contribution from the speed at higher temperatures, to what the direct value is along 
the surface of the water. Consequently, in such a case someone will hear sounds 
from far away that would not be audible at other times.

Fig. 4.11 Does this situation look familiar to you? What do you suppose it represents?

4 Refraction
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Fig. 4.12 Emission of sound waves from a source; they are represented both by circular wave 
fronts and arrows perpendicular to them. In (a) a listener at the same height as the source on the 
ground will received the direct sound produced by the two lowest dashed arrows (one on each 
side). The other arrows represent the sound as it propagates through the air. In (b) due to tempera-
ture inversion caused by the sun heating the air in the early morning resulting in cooler layers near 
the surface, the wave fronts bend to indicate the refraction of sound. The net result is that a listener 
at B will experience sound coming from the direct (dashed arrow) direction, as well as from the 
bent arrow at higher layers

Exercise
The dependence of the speed of sound on temperature is given by the 
equation

 
n = +( )331 0 606. /Tc m s

 

where Tc is measured in degrees Celsius.
In each of the cases represented below, the person at A is at the source of 

the sound so she does not measure a value for the speed of sound; however, 
the person at B measures the value given in each case.

(continued)
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Using the above equation, what must be the air temperature for (a), (b), and (c)?

In the case of sonography or the use of sound in medical applications, high 
frequency (ultrasound) pulses are used and their echoes or reflections help deter-
mine the locations and other features of internal organs as the sound encounters 
objects of varying densities in the body.

Consider a pulse incident upon a person’s body and experiencing both reflection 
and refraction at two obstacles; the first is the stomach surface, and the second an 
internal organ. The following figure illustrates the situation.

Figure 4.13 illustrates the basic procedure where an incident sound pulse under-
goes reflection and transmission three times; twice at the stomach wall and once at 
the organ surface. The last reflected pulse (pulse 2) is really an approximation of the 

Fig. 4.13 Use of sonography for diagnostic and treatment purposes. The basis of the technique is 
a sound pulse sent by the transducer (a device that both sends and receives signals) that is both 
reflected and transmitted. Upon encountering the stomach wall, pulse 1 is reflected (pulse 2) and 
transmitted (pulse 3). The orientation is reversed for all reflected pulses shown since the incident 
pulses (1 and 3) encounter a boundary with a medium of higher index of refraction. The distance 
to the organ (dashed black arrow) can be determined by using the time difference between pulses 
2 and 4, and using the speed of sound inside the body
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transmitted one from pulse 4; at the stomach wall pulse 4 is both reflected and 
transmitted. However, the reflected part is minimal since the sound is now going 
from a medium of higher (the body) to one with a lower index of refraction (air), 
thus the transmitted pulse (pulse 2) contains most of the sound energy. These details 
were left out of the figure to keep it as simple as possible.

Problems
 1. Ultrasound waves are used for imaging and treatment; if the speed of 

sound inside the human body is approximately that of sound through water 
(1500 m/s), and if the range of imaging frequencies is between 2 and 
15 MHz.

 (a) What is the range of wavelengths visible?
 (b) What are the types of everyday objects that are visible with this 

technique?
 (c) If 3.5 MHz is used for abdominal imaging, what is the smallest size 

visible?

 2. If your dog accidentally swallows a pebble roughly 5 mm in size, can ultra-
sound imaging be used to determine its location? Explain why or why not.

Applications to Sound
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Chapter 5
Interference and Standing Waves

Have you noticed that in a room full of people you are able to hear several conversa-
tions, and it is often difficult to concentrate on the one you may be having with the 
person next to you? Or that if an object falls into a liquid it creates ripples that mix 
with one another after a while?

This is the result of the fact that waves behave very differently from other material 
objects upon encountering other waves, or even encountering themselves, which 
sounds rather odd. In general, whenever an object interacts with another, such as 
when they collide the result is either a separation or a joining of them. This is a 
consequence of the properties possessed by the objects known as energy and momen-
tum that are exchanged between the objects regardless of whether they separate or 
stay connected after the collision.

Waves, on the other hand, exhibit the ability or capacity to go through one another 
as they interact, resulting in properties different from other objects. This statement of 
course is only true at the level of perception where the laws of everyday phenomena 
apply. There is an area of physics known as quantum mechanics where both material 
objects such as sub-atomic particles, and waves behave similarly. This effect dissi-
pates as the size of the objects increases beyond the realm of microscopic interac-
tions. Therefore, the terminology we use is strictly applicable to phenomena where 
quantum effects are negligible.

 The Principle of Superposition

As pointed out in chapter two when discussing pulses, whenever we use the term 
interference as applied to the way material objects or people interact, we mean an 
obstruction of sorts, where something stands in the way, or impedes something else. 
In the case of waves interference means the opposite; the interaction is not repulsive 
but cohesive if you wish to look at it that way. The interaction of waves can be 
understood with the principle of superposition. It basically states that waves can 
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be combined at the same location in space, and this combination leads to two types 
of interference, constructive and destructive.

In constructive interference the resulting amplitude is greater than the individual 
ones before they interacted, and the opposite is the case for destructive interference, 
where the waves can even cancel each other out in terms of amplitude. However, the 
individual waves can pass through each other without being altered in any way, the 
alteration takes place afterwards. If the shape of the waves is not maintained, the 
resulting wave will eventually dissipate, as energy is lost in the interaction. However, 
if the shape is kept, such as when a string is held fixed at both ends, and is continu-
ally plucked, then an interesting phenomenon is produced, that of a standing wave. 
The following figure illustrates this for the case of mechanical waves produced by 
a vibrating string held fixed at the ends. What is interesting is that this represents the 
case when a single wave can interfere with itself to produce both constructive and 
destructive interference.

Figure 5.1 illustrates that as the wave produced by the string bounces back 
and forth between the ends, a repetitive pattern results where constructive inter-
ference is a maximum at the largest amplitudes, and destructive interference a 
minimum at the points along the horizontal where there is zero amplitude. These 
alternating points are known as both the antinodes (A) and the nodes (N). The 
figure shows the first four modes or patterns of vibration—the fundamental (bottom) 
and its multiples or harmonics. Note that the fundamental contains two nodes 
and one antinode.

Fig. 5.1 A standing wave produced by the vibrations of a string held fixed at the ends. Notice how 
the string begins to vibrate from its equilibrium position (the horizontally dashed line) until the 
vibrations reach a maximum displacement (A). The first mode of vibration or fundamental wave is 
at the bottom of the figure, and the harmonics or multiples are shown above it. The number of 
nodes (N) and antinodes (A) repeat themselves in sequences as one goes from the fundamental to 
higher modes of vibration

5 Interference and Standing Waves
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Conceptual Task
How does the number of nodes and antinodes change as you move up from 
the fundamental wave to the forth mode or third harmonic?

Which one leads in number as the sequence unfolds?

Exploratory Task
Standing waves can be generated in a variety of ways; we can use water waves 
to represent a standing wave created by the reflection of the waves from a 
surface (a wall). Use the online simulation at (http://phet.colorado.edu/index.
php); Choose Wave Interference from the available choices, select the water 
tab and make sure the screen looks like the figure below.

 

You will notice as you run the simulation that the amplitude of the water 
wave decreases and we expect that as the waves exit the screen on the right 
they eventually dissipate.

• Pause the simulation, add a wall, and adjust its position so that it looks like 
the figure below.

(continued)

The Principle of Superposition

http://phet.colorado.edu/index.php
http://phet.colorado.edu/index.php
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• Continue with the simulation and describe what you see; then gradually 
increase the frequency until a clear pattern of alternating bright and dark 
regions appears. Now rotate the wall until it is fully vertical and at the right 
end of the figure, and wait for a few seconds. How do the representations 
from the figure and the graph compare?

• How can we conclude that this is an example of wave interference?
• Stop the simulation, click “Reset All” and choose Two drips; make sure the 

amplitude and frequency are towards the middle of their ranges. Run the 
simulation and describe what happens; how does what you see now resemble 
the part with the wall?

The same types of interference can be seen when you choose “Sound” and 
“Light” in the above task. It is important to notice that the units of intensity in the 
graphs are different: water level for the water, pressure for the sound, and Electric 
Field for the light, as these represent different vibrational phenomena that can all 
display interference patterns.

 Beats

When two waves start out with slightly different frequencies and they interact, the 
result is an alternating pattern of constructive and destructive interference; the 
pattern exhibits a particular shape called a beat. It has a given frequency, which 
depends on the initial frequency difference between the interacting waves. Figure 5.2 
shows the evolution of the pattern, from its beginning to its completed shape.

5 Interference and Standing Waves
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Conceptual Task
In the diagrams that follow, the beat frequencies are a function of the initial 
frequency differences between two interacting waves. In (a) the difference is 
50 Hz, in (b) it is 40 Hz, in (c) it is 30 Hz, and in (d) it is 5 Hz.

What is the relationship between frequency difference and beat frequency?

  

 

(continued)

Beats
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Fig. 5.2 The development of beats occurs as two waves of equal amplitude but slightly different fre-
quencies interact. In (a) the interacting waves are shown along with the resulting (larger amplitude) 
wave; as they begin to change phase, or to be out of step with each other the resulting amplitude 
decreases. In (b) the waves are shown after a sufficiently long time interval as their interaction has 
developed the pattern of beats. Whenever the waves are out of phase or opposite to one another, the 
beat will have a node; when they are in phase or in step with one another, the beat has an antinode

5 Interference and Standing Waves
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 Resonance

The phenomenon of beats serves as an introduction to an important property of 
waves that results when an interaction between two waves results in a maximum 
value for the resulting amplitude. This is generally known as resonance, and many 
phenomena as well as systems that display wave properties exhibit it.

Whenever vibrations result in a wave that is acted upon by an external agent such 
as a variable force that itself has a repetitive pattern, the wave is affected depending 
on the periodicity of the applied force. Consider a child on a swing set; to get started 
a push is needed (the external force) and the child moves back and forth in an oscillat-
ing pattern that can be described by a wave. As time goes on, the amplitude of the 
wave decreases (the child will return to the starting position), unless there is a means 
to keep the oscillations going. This can be provided by continuing to apply the push, 
or as the child will learn, by tucking and extending its legs. However, regardless of 
how it is done, it must be done in unison, or with the same periodicity as the swinging 
motion of the child. The resulting successful maintenance of the motion is an example 
of resonance. The amplitude of the oscillations described by the child’s motion is kept 
at a maximum, thus facilitating the continuation of the swinging activity.

Exploratory Task
Virtual Demonstration of Resonance

Use the PhEt simulation “resonance” available at:
https://phet.colorado.edu/en/simulation/legacy/resonance
Make sure the initial figure looks like this

 

Prediction: Is there a way to make the platform move up and down so that 
one of the springs oscillates greatly as compared to the others?

 1. Choose 2 resonators from the toolbar of the number of resonators
 2. Turn the driver on

(continued)
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 3. Observe what happens for a few seconds; what do you see shown on the 
simulation that explains why the amplitude of simulator 1 is the greatest?

 4. Click on the box showing Resonator 1 and type 2, hit enter and note the 
frequency of resonator 2 at the bottom of the blue box.

 5. Now change the frequency of the driver by rotating the knob under the 
moving platform and setting it to a value equal to that of resonator 2.

 6. What did you observe happening after a few seconds?
 7. Finally slide the top rider indicating the number of resonators until you see 

six (6) springs appear oscillating on top of the moving platform.
 8. Again, click on the box showing Resonator 2 and type the value of any of 

the added oscillating springs. When you see its frequency appear, change 
that of the rider until it matches it and determine if the same thing that hap-
pened before takes place now.

 9. Does this observation confirm your prediction?

There are many instances of resonance, and a good activity that exposes us to its 
devastating effects (quite unlike the successful effect of keeping a child moving on 
a swing set) is provided in the following task.

Conceptual Task
Consider the situation described by many videos (on you tube) where the 
Tacoma narrows suspension bridge collapsed. The bridge had been oscillating 
basically in the fundamental mode of vibration (see the bottom part of Fig. 5.1) 
for months. However on the morning it fell, a new mode of vibration appeared.

Can you identify the mode by comparing the parts of the video showing 
the bridge’s motion that day, and one of the modes from Fig. 5.1?

Exploratory Task
Use the PhEt simulation that allows you to display the motion of a mass or a 
system of masses attached to springs available at:

https://phet.colorado.edu/en/simulation/normal-modes
Try to simulate the motion of the Tacoma narrows bridge from the video 

by using the simulation and pointing out features from the film that can be 
reproduced with it. Some suggested ways to use the simulation follow:

 1. Choose 1 mass, slide the frequency button upwards and then start the 
oscillation.

 2. Choose 2 masses and manipulate the frequency modes until you get the 
system to move in a similar way to the oscillating bridge.

5 Interference and Standing Waves
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As seen from the previous tasks there are many interesting applications of the 
concept of resonance involving a wide variety of phenomena. It is one of those 
unique wave properties that can provide insights into many other phenomena where 
such behavior (matching frequencies) may help us see relationships not otherwise 
apparent. In particular, how information content (in the form of energy or other 
intensity relations) can be transferred and maximized between systems.

 Application to Sound

The quantitative differences between various types of vibrations resulting in stand-
ing waves can be understood as these are produced in two ways:

 1. By the vibrations of a string held fixed at both ends
 2. By the vibrations of an air column in tubes

String vibrations and the vibrations in a column of air in a tube that is open at both 
ends have similar properties. The following figures show the differences, as well as the 
common features between these vibrations, and those in a tube with one end closed.

Figure 5.3 shows how the string vibrations and those of air inside a tube open at 
both ends are similar in the patterns produced. Both show that for the fundamental 
mode of vibration the wavelength is ½ the length of the string, or the tube. It is easier 
to see that for the string than for the tube since a half wave is more readily perceived, 
although both exhibit the property that two corresponding points on the waves 
shown, separate a linear distance that corresponds to half a wave. As the next three 
vertical modes of vibration, or harmonics appear, they are simply repeating patterns 
of the fundamental one. The first four modes are shown, and the difference is that 
for a string the sequence of the number of nodes moving vertically leads that of the 
antinodes, whereas it is the reverse for the air vibrations.

Fig. 5.3 The patterns resulting from the vibrations of a string held fixed at both ends, and from air 
vibrating inside a tube open at both ends. In both cases (N) are nodes or points that are not dis-
placed vertically, and (A) are antinodes or points where the displacement from equilibrium (the 
horizontally dashed line) is a maximum

 Application to Sound
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The situation is different in Fig. 5.4 where neither the nodes nor the antinodes 
lead; they are equal in number as the harmonics repeat the pattern created by the 
fundamental mode of vibration. Additionally, as the pattern is reproduced vertically 
the need to maintain a node at the closed end, as well as to have a corresponding 
increase in the number of antinodes requires that only odd multiples appear, there 
are no even multiples like in Fig. 5.3.

Air vibrations can be understood in terms of either vertical air displacement or 
changes in air pressure. One can see that they are inversely related, when the air 
movement is a maximum the air pressure is a minimum. Correspondingly, when the 
air movement is a minimum the pressure is a maximum.

At this point it is important to remember that the actual motion of air is that of a 
longitudinal wave, where the maxima and minima are really regions of compression 
and expansion of air inside the tube. The above representation is only for the pur-
poses of illustrating the similarities and differences between air vibrations and those 
of a string, which are transverse since the string cannot be compressed, although 
being under tension generates the standing waves.

The mathematical representation of the above features summarizes the differ-
ence between the recurring patterns, and it also illustrates the reason why in the case 
of sound produced by wind instruments there is a difference of tone quality (timbre) 
despite the frequency being the same.

For both cases in Fig. 5.3 the fundamental frequency is obtained from
v = λ f using L = λ/2

Fig. 5.4 The vibrations are those of air inside a tube with one end closed

5 Interference and Standing Waves
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f1 = v/2L, where f1 is the fundamental frequency corresponding to the lowest 
mode of vibration.

For the second harmonic or first overtone L = λ, and so f2 = v/L

Expressing as a ratio 
f

f

v L

v L

1

2

2
1 2= =

/

/
/  which means that f2 = 2 f1

For the third harmonic or second overtone L = 3/2 λ, and so f3 = 3v/2 L = 3 f1

Finally, for the fourth harmonic or third overtone L = 2λ, and so f4 = 2v/L = 4 f1

Consequently, for string and air vibrations in a tube open at both ends, all the 
harmonics (even and odd) are present.

However, for Fig. 5.4 the fundamental frequency f1 = v/λ, and using L = λ/4 gives

 f v L1 4= /  

For the first overtone L = 3/4 λ, and so the next harmonic is f = 3v/4 L = 3 f1 or f3 
instead of f2!

The same is true for the next overtone where L = 5/4 λ, and so its frequency is 
5f1 or f5

Therefore, we can see that for a tube closed at one end the even harmonics are 
missing, only the odd ones appear. That is what makes a difference in the tone qual-
ity produced by wind instruments that are open at both ends (like a flute), and those 
reed instruments (like a clarinet) that are open at one end only.

Exercises
 1. What is the length of a string that produces a second harmonic frequency 

of 300 Hz if its wavelength is 20 cm?
(Hint: this exercise can be solved either by getting the length from the 

equation for the second harmonic directly or by realizing that the second 
harmonic is simply twice the first, and then finding the length from the 
fundamental one).

 2. How long must a tube closed at one end be if the second harmonic of air 
vibrations has a frequency of 600 Hz? (Use v = 340 m/s)

 3. (A) What is the wavelength for a 2 m long tube open at both ends when 
the third harmonic has a frequency of 900 Hz? (Use v = 340 m/s)
 (B) How many antinodes and nodes exist in this mode of vibration?

Adding harmonics can have interesting applications in sound due to the effects 
that a set of tones of different frequencies can have upon listeners. One such exam-
ple is the sound produced by a group of harmonics where one can hear the funda-
mental frequency mixed in with the higher overtones; remarkably, a collective 
sound produced by such a group will contain a tone perceived by the listener as the 
fundamental, even if that frequency is missing from the group!

Application to Sound
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 Application to Light

The combination of waves with varying frequencies and wavelengths can also occur 
in the case of light, where the composition of the spectrum can help understand how 
colors are formed and perceived. Red, green, and blue are the primary colors of 
light, which correspond to color-sensitive cells called cones in the human eye; yel-
low, magenta (a purple color), and cyan (a green-blue color) are called secondary 
colors. Each color is associated with a particular wavelength.

The classic demonstration of the decomposition of white light into its respective 
colors is attributed to Newton, who also demonstrated that not only can a beam of 
white light be split into various colors by a glass prism, but another prism can be 
used to recombine them into the white light initially observed. Figure 5.5 illustrates 
this phenomenon.

Color mixing follows a similar type of property to that of sound frequencies, 
where a net result is obtained from adding or subtracting individual frequencies to 
produce specific patterns of sound. In the case of light the addition of the fundamen-
tal or primary colors (red, green, and blue) will in turn produce secondary colors 
that are a mixture of those. This is the way television and computer monitor colors 
are produced, where the middle area (white) corresponds to a pixel. For subtractive 
color mixing one begins with the secondary colors (cyan, magenta, and yellow) and 
by successive filtering arrives at the absence of color (black). This is the way print-
ing and painting color mixing is done (Fig. 5.6).

Exploratory Task
Use the PhEt simulation “Fourier: Making Waves” available at

http://phet.colorado.edu/en/simulation/fourier
Choose the first eight harmonics so that each of their amplitudes is 0.5; 

then click the speaker symbol to hear the sound. After a few seconds, turn off 
the fundamental (A1) by lowering its amplitude to zero, and then listen care-
fully to detect its presence amid all the remaining frequencies heard.

Fig. 5.5 Two prisms are used; one to separate the white light into its colors, and another one to 
recombine the spectrum into the original white light

5 Interference and Standing Waves
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Fig. 5.6 Color mixing of the primary and secondary colors by addition and subtraction. The cen-
ter of the figure on the left would be white color

Exploratory Task
The two processes of color mixing can be demonstrated with the use of the 
PhEt simulation

“Color Vision” available at http://phet.colorado.edu/en/simulation/
color-vision

 1. For additive color mixing select RGB bulbs and gradually change the 
intensity of each of the colors; observe the secondary colors that are per-
ceived as the intensity of the primary ones changes. In particular, notice 
the shades produced as any given two primary color intensities are gradu-
ally increased and mixed.

 2. For subtractive color mixing, first select the white light and notice how the 
color perceived corresponds to that of the filter as you slide the filter con-
trol. This corresponds to the way colors are perceived when white light 
shines on an object that has been painted a given color, where the other 
colors of the white light are absorbed, and the one corresponding to the 
painted one is reflected.

 3. Demonstration of Resonance— Now select the colored bulb and notice 
that as you change either the bulb or the filter color, the perceived color is 
always black unless the two colors match. This is the result of the two 
frequencies or wavelengths being identical, which produces the maximum 
intensity of the light perceived.

Application to Light

http://phet.colorado.edu/en/simulationSimulation/color-vision
http://phet.colorado.edu/en/simulationSimulation/color-vision


116

Problems
 (1) (a)  How long should a closed tube in air be such that its fundamental 

frequency is 200 Hz?
Use v = 345 m/s.

 (b) What is the frequency of its next possible mode?
 (2) The second possible standing wave in a closed tube in air has a frequency 

of 1000 Hz.

 (a) What is its fundamental frequency?
Use v = 345 m/s.

 (b) What is the fundamental wavelength?
 (c) What is the length of the tube?

 (3) (a)  A standing wave is oscillating at 690 Hz on a string, as shown in Fig. 5.7. 
What is the wavelength?

 (b) What is the speed of traveling waves on this string?
 (c) How many nodes and antinodes are shown in Fig. 5.7?

Fig. 5.7 A standing wave 
created by a vibrating 
string, containing more 
than one wavelength

5 Interference and Standing Waves

http://dx.doi.org/10.1007/978-3-319-45758-1_6
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Chapter 6
Diffraction

We already discussed one type of bending experienced by waves as they are refracted 
upon encountering media with different indices of refraction. In that case we saw 
that when a wave goes from a medium of lower to one of higher index of refraction, 
the rays describing the wave bend toward the normal; when the rays emerge from a 
medium of higher to one of lower index of refraction, they will bend away from the 
normal. The property called diffraction is another bending of sorts, but it occurs as 
waves travel through a medium, and encounter an obstacle. Obstacles can vary in 
shape and size, and the bending is always dictated by their geometry.

The first part of this chapter is concerned with light since there are many interesting 
features of the historical development of the understanding of diffraction while using 
light, as well as many interesting applications. We shall then apply the concepts and 
principles to sound.

A good example of the ability of light and sound to diffract around obstacles, but for 
one of them not to be readily perceived, is provided by the following situation. Imagine 
that you are communicating with someone, and that communication consists of both 
audio and visual information. If you were walking backwards (very carefully!) while 
having the conversation, and then you go around an obstacle such as a large tree, you will 
continue to hear the person but not see him/her while you are behind the tree. In fact, the 
situation can be made even more dramatic by having you turn around a corner of a build-
ing and still notice the same thing. The reason why you can hear the person but not see 
them is that the size of the obstacle is more comparable to the wavelength of sound, than 
to that of light; while both light and sound are diffracted by the obstacles the effect isn’t 
noticeable for light (you do not see the person), but it is for sound (you can hear them).

Conceptual Task
Suppose in the situation just described, you were also in communication with 
the other person by using your cell phone; as we know the signals are electro-
magnetic (like light), and yet you can still receive them after you have lost the 
visual information. Why you do suppose this happens?
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Exploratory Task
Use the online simulation at (http://phet.colorado.edu/index.php); Choose 
Wave Interference from the available choices, then select the Water tab, make 
sure the screen looks just like the figure below:

 

Describe what you observe as the droplets fall
Now click on the Add Wall button and orient the wall so that is appears 

vertically as shown below

 

(continued)

6 Diffraction
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The important aspect of diffraction is that the wavelength of the diffracting waves 
must be comparable in size to the dimensions of the obstacle, as determined by its 
discoverer Francesco Maria Grimaldi in the seventeenth century. He observed that 
when a beam of light came into a dark room and projected onto a surface, the spot made 
resembled the opening through which the light came in. If the opening is circular, the 
spot is also circular; however, as the size of the opening decreases the spot at some 
point will be surrounded by a set of concentric circles. This is the result of the wave 
bending around the opening and reproducing its shape onto the projection.

Figure 6.1a shows a set of wave fronts represented by the parallel lines, that upon 
encountering the gap will diffract. Notice that in part (b) there are lines drawn past 
each gap, but these don’t imply that there will be projections onto the screen where 
dots will appear. What will appear as a central maximum representing constructive 
interference will be directly across from the middle of the line that separates the two 
gaps, where the diffracted waves are intersecting each other.

The essential aspects of diffraction can be demonstrated by a diagram that 
illustrates wave fronts being diffracted by a circular opening, and the resulting 
interference being projected onto a screen at a distance from the opening. This is 
shown in Fig. 6.2.

Figures 6.2 and 6.3 show the details of diffraction as wave fronts incident from 
the left go through a circular opening. The size of the opening between points 1 and 2 
is taken as the diameter and two points on a given wave front are shown  illustrating 
that there are two paths taken between the opening(s) and the screen where the 

Describe what you observe as you slide the wall across the screen, and as 
you shorten its length.

Fig. 6.1 The phenomenon of diffraction can be shown as occurring whenever waves encounter 
obstacles, such as the gap in (a) the transmitted wave now diffracts as shown by the bending. As 
shown in (b) two such gaps will lead to interference between the diffracted waves, resulting in 
alternating constructive and destructive regions of interference

6 Diffraction
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interference pattern can be displayed. The two paths are clearly of unequal length; 
using a right triangle one can see that the sine of the angle θ is the opposite side (the 
path difference) divided by the adjacent side (d). Therefore, the path difference is 
given by d sin θ.

Now different conditions can be imposed on this path difference to illustrate the 
criteria for constructive and destructive interference. Notice that there is no path 
difference along the horizontal line that denotes the distance between the opening(s) 
and the screen L; this means that for both a single opening and multiple ones, there 
will always be a bright spot or region along the horizontal representing constructive 
interference, called the central maximum.

Screen

y

L

1

2

Fig. 6.2 A series of wave fronts on the left are incident upon a circular opening between points 1 
and 2, and are shown diffracted as they emerge from the opening. The diffraction causes points on 
the wave fronts to interfere, forming patterns of constructive and destructive interference on a 
screen at a distance L from the opening. The distance y is used to illustrate points of constructive 
or destructive interference

Path difference

Path difference

(a) (b)

d

y y

d
L

L

qq qq

Fig. 6.3 Part (a) shows a magnified view between points 1 and 2 of the path difference between 
two points on a wave front for a single circular opening of diameter d, and part (b) shows it for 
points at the middle of two such openings separated by a distance d

6 Diffraction
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What is typically done with a single opening is to impose a condition for 
minimum intensity resulting from destructive interference on both sides of the 
central maximum; this will occur whenever the path difference is equal to one half 
wavelength. This means that the two paths are out of phase when they arrive at 
the screen, and thus cancel each other out. For this to happen one can construct a 
similar triangle by taking half the diameter of the opening to form the hypotenuse, 
so the path length will be

 
d m m/ sin , , , ,2

2
1 2 3q =± ± ¼

l
where is

 
(6.1)

(The negative values of the integers are only meant to illustrate the fact that the 
positions of the dark fringes representing destructive interference on the screen 
appear above and below the central maximum along the length L).

The absence of m = 0 indicates that there is no central minimum; instead there is 
a central maximum. The expression then can be simplified to

 sin /q l= ±m d  (6.2)

Equation (6.2) states that for a single opening diffraction, there will be a series of 
regions of destructive interference on both sides of the central maximum.

For the case of diffraction by two openings the equation for the path difference 
can be written using Fig. 6.3b as

d sin θ = m λ for constructive interference, and d sin θ = m λ/2 for destructive interfer-
ence. Constructive interference of course results when the path difference is equal to a 
complete wavelength, which means the two interacting waves are in phase.

From Fig. 6.3 one can get

 
tan q =

y

L  
(6.3)

A useful technique called the small angle approximation is based on the following 
relationship

tan θ = 
sin

cos

q
q

 and since for small values of θ we have cos θ ≈ 1,whenever θ is small

 tan sinq q»  

 
And so d

y

L
sinq =

 
(6.4)

Equation (6.4) can be used to determine various parameters, especially when a mul-
titude of openings are used in a device called a diffraction grating. Such a device is 
used to split white light into its colors, and has a great number of important applica-
tions. The openings do not necessarily have to be circular, in the case of diffraction 
gratings they are slits resulting from the stretching of a plastic material, and many 
of these slits are packed into an extremely short width of material where the value 
of d is typically expressed in microns (millionths of a meter in length).

6 Diffraction
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Example
Consider the situation where laser light goes through an opening that is 
0.25 mm wide, and a central maximum appears on a screen that is 100 cm 
away. If the width of the central maximum is 4.0 mm, what is the wavelength 
of the light?

We use the small angle approximation, and begin with m = 1 for the central 
maximum.

Then using sin θ = ± m λ/d → sin θ = λ/d

And tan θ = 
y

L
Since the width is 4.0 mm (this represents 2y from Figure 3a), then 

y = 2.0 mm, and L = 100 cm
Converting to meters: y = 2.0 × 10−3 m, L = 1.0 m, and d = 2.5 × 10−4 m
tan θ = 2.0 × 10−3 m/1.0 m = 0.002
And since tan θ ≈ sin θ
sin θ = λ/d becomes λ = d sin θ = (2.5 × 10−4 m) (0.002) = 5.0 × 10−7 m
Such short wavelengths are usually expressed in nanometers (nm), and 

1 nm = 1.0 × 10−9 m
Hence λ = 500 nm.

Conceptual Development Task
As stated earlier the phenomenon of diffraction depends on the scale of the 
dimensions of the obstacles that cause waves to exhibit such a property. One 
can explore the way in which the size of obstacles such as slits can affect the 
way light diffracts. The setup is shown in the figure below:

 

(continued)
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When white light passes through a diffraction grating, the spectrum of colors can 
be seen. When monochromatic light (light of a single color, such as that produced 
by a laser) passes through a diffraction grating a series of dots of the same color will 
instead appear on a screen. These are the regions of constructive interference, and 
the space between them corresponds to regions of destructive interference.

The following figures illustrate the cases of diffraction due to a single opening, 
as well as due to two such openings.

Figure 6.4 shows the diffraction of light caused by a single opening. A source 
sends the wave fronts from the left and when these encounter the obstacle (the single 

 1. Use a source of white light with the glass slab containing a variety of slits 
and notice the way the pattern appears on the screen as you let the light 
through each slit. What do you notice as the number of slits increases?

 2. Repeat the procedure but instead of white light, use a laser of a given color 
or wavelength; make sure not to look at the reflection of the laser on the glass 
plate, and instead concentrate on the patterns produced on the screen for 
each type of slit. What is different now from what you observed in part 1?

Fig. 6.4 Diffraction caused by a single opening. The source of light sends circular wave fronts that 
are diffracted by the opening and interfere to produce the pattern shown at the screen as a central 
maximum. Note that the intensity graph shows the largest amplitude (at 0.55) for the central maximum, 
and two smaller peaks (at 0.87 and 0.22, respectively)
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opening) they are diffracted. The left side of the figure shows the wave fronts 
containing regions of light and dark bands, which is due to the wave fronts  interfering 
with themselves upon reflection from the obstacle. One can see how the wave fronts 
bend around the edges of the opening and propagate toward the screen, where the 
pattern can be displayed.

The peak of intensity corresponds to the region of maximum brightness on the 
screen, and the gradual change in the curve corresponds to the decrease in brightness, 
as you go up and down from the central maximum.

Exploratory Task
To explore the use of the equations expressing the relationships between the 
various factors involved in diffraction

sin / tanq l q= =d
y

L
and

And using the small angle approximation sin θ ≈ tan θ, one can write the 
following equation:

l
d

y

L
=

To determine how the width of the central maximum changes, one solves for y

y = L 
l
d

, and so the width (2y) = 2L 
l
d

Use the online simulation at (http://phet.colorado.edu/index.php); Choose 
Wave Interference from the available choices, then select the Light tab, make 
sure the screen looks just like the figure below:

 

(continued)
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The use of a single opening or slit for diffraction applications is important as it 
tells us what are the limits of imaging (used in a general sense, not just with light). 
The dependence of the width of the central maximum on the various factors explored 
in the previous task can be used to show why one cannot image an object that is 
smaller than the wavelength of the signals used.

In the equation “Width of central maximum = 2L 
l
d

” if one uses a device where 

L and d are constant, the only variable left is the wavelength λ. The usual condition 
for single slit diffraction is that L >> d (the distance from the slit to the screen is 
much greater than the width of the slit).

Recall that the range of visible wavelengths is approximately (400–750 nm); if 
we were to use light of 600 nm being incident on a slit ¼ mm wide as used in a 
previous example, d = 2.5 × 10−4 m, and projected onto a screen at 2.0 m distance, we 
would get a central maximum of width 2y where

2y = 2 (2.0 m) (6.0 × 10−7 m)/2.5 × 10−4 m = 0.0096 m or 9.6 mm, which is signifi-
cantly larger than the width d.

If we were to use instead a width an order of magnitude greater (ten times), d = 2.5 mm
2y = 2 (2.0 m) (6.0 × 10−7 m)/2.5 × 10−3 m = 0.00096 m or 0.96 mm.
This represents a central maximum width that would be smaller than the width d 

of the slit, and being nearly 1 mm it would be extremely challenging to see. We can 
compare this result with the first part, where the central maximum width is almost 
1 cm and thus definitely visible.

However, there is an additional problem with the second result besides the fact 
that it becomes very difficult to see the central maximum width. The following fig-
ure is designed to illustrate the results of the above exercise, not to scale of course.

As Fig. 6.5 shows, in the first part (a) there is a definitely clear central maximum 
with a peak that gradually goes to zero, as expected for the adjacent minima. In part 
(b) the central maximum is no longer there, instead there is a tendency for a central 
minimum to form, although the intensity does not go to zero before repeating the pat-
tern. The second pattern almost seems like a reversal of the first part; instead of being 
sharp at the middle, the pattern is now blurred. In addition, the distance between 
minima has increased so much that there is no way to tell what it is in part (b) as the 
pattern essentially goes off scale, and in part (a) it was easily determined to be 0.50.

The dramatic change in pattern shown above results from the change in size of 
the slit width, even though only one source of light is sending the waves that are 
diffracted. Looking at the two peaks one may be tempted to extrapolate back and 

The objective is to test the dependence of the width of the central maxi-
mum, on each of the variables in the equation (L, d, and λ). Change one vari-
able at a time, and describe what happens as you reach the limits of the values 
of each variable in testing the relationship

Width of central maximum = 2L 
l
d

 (the 2 is a constant factor that does not 
affect the relationships).
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imagine that instead of one light source, there are now two. If this effect arises from 
only one source of light, imagine what happens where there is more than one.

The above result can be used to explain a limitation that exists for optical devices 
due to the wave nature of light. Imagine two sources of light quite distant from a slit 
of width d. If light were not diffracted and interfere with itself as it bends around the 
opening or slit, we would expect to see two bright spots on a screen corresponding 
to each of the light sources. However, as a result of interference each light source 
will appear as a central bright spot (the central maximum width) surrounded by 
adjacent dark areas, and even other maxima further away from the central one. With 
two light sources being diffracted the result is now an addition of two patterns 
appearing on the screen. If the two light sources are sufficiently separated their pat-
terns can appear as the result of Fig. 6.6a. However, what one usually gets is the 
result of Fig. 6.5b, where the two overlap.

Figure 6.6 illustrates what happens in the extreme case where two sources of 
light cannot be resolved by an optical instrument such as a telescope, or the human 
eye due to the fact that the interference patterns produced by each source combine. 
The two maxima overlap and what should happen in (a) instead often results in (b).

Ideally the central maximum of one image should appear where the first mini-
mum of the other image is, a condition or limit of resolution called Rayleigh’s criterion. 
This applies to optical instruments in terms of the limit of resolution of images of 
distant objects, such as stars. However, ordinary objects like automobile headlights 
can also appear as a single source when they are far away, and only become resolved 
as two as the distance decreases sufficiently for the human eye to see them as two.

Fig. 6.5 Graphical representations of the changes made in the exercise above. The wave is repre-
sented by the changes in the electric field that is part of the electromagnetic oscillations that are 
light. The figure shows in both parts that the wavelength λ of the light, and the separation L between 
the slit and the screen remain constant. In part (a) there is a clear central maximum with a sharp 
peak and gradual decrease to zero intensity for the adjacent minima. In part (b) the slit width is 
made significantly larger than in (a), and this leads to the fuzzy pattern that now forms where the 
central maximum was, and the intensity of the peaks does not decrease to zero in between them
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Figure 6.7 shows the situation for two openings, with similar features to those of a 
single one. However, there is more detail available in the pattern. The intensity peak 
at approximately 0.53 represents the central maximum, those at 0.43 and 0.65 in turn 
represent the first two minima, and those at 0.30 and 0.77 represent the first-order 
maxima.

Fig. 6.6 Two sources of light sufficiently separated by a distance should exhibit the pattern shown 
in (a) that corresponds to the projected images being resolved, since the two patterns are clearly 
distinguished. What one usually observes is the result of Fig. 5b where the two patterns overlap. 
The extreme case is shown in (b) where the projected pattern or image appears as that of one, when 
in reality there are two sources

Fig. 6.7 Diffraction caused by two openings. The interference pattern is more discernible than for 
a single one

6 Diffraction
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Experimental Task
As we saw in the previous activity that used a laser, we want to minimize the 
exposure to the reflection of the laser light from a glass or other smooth sur-
face. In that task we concentrated instead on the pattern of diffraction on a 
screen produced by the light as it went through the slits. However, this same 
property of reflection can be used to determine the wavelength of a given light 
color. As you may have previously noticed, and as can be seen in the figure 
below the reflection of light from a compact disc can produce a color spec-
trum since its surface appears smooth, but it really isn’t. There are a number 
of versions of this experiment available online as well as other excellent 
sources such as the one described in The Physics Teacher [2].

The objective of this experiment is to use a known wavelength from a 
monochromatic source (a laser) to determine the diffraction properties of a 
compact disc, so that when a light source that contains all the colors shines on 
the disc, individual color wavelengths can be isolated and measured.

Procedure
(I) Determination of the track separation on the CD
In this part we use a laser and shine it through a hole on a screen (a sheet 

of hard paper) so that it reaches the compact disc (CD) along the direction of 
the normal to the disc, and it reflects back onto the screen. The screen should 
be located approximately 20 cm from the CD (Important: Make sure the 
laser hits part of the CD tracks, not the middle of the disc).

 

 1. The intensity graph representation corresponds to the bright and dark fringes 
seen on the screen, with the central maximum illustrated by the dashed line. The 
fact that the central bright maximum appears exactly behind the line separating 
the two openings serves to illustrate the way the wave model of the nature of 
light was demonstrated in the early nineteenth century by Thomas Young [1]. If 
light consisted of particles, as Newton and others had thought, the interference 
pattern would not be formed since the particles could only appear on the screen 
directly across from the openings. In other words, there would only be two bright 
spots on the screen, exactly where the particles impacted it.

(continued)
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Experimental setup showing the laser going through the slit on the screen 
and its reflection on the CD forming the set of dots on both sides of the central 
maximum. The following pictures show the pattern obtained.

You should observe first- and second-order spots on both sides of the cen-
ter hole; measure the distance D between the inner two (first-order) spots, as 
well as between the second-order spots.

  

 

The diffraction pattern is shown in the dark on the first picture, and with 
some light on the second, where the laser can be seen to the left of the screen. 
There are clearly two sets of bright spots on either side of the central maxi-
mum (the middle spot); these correspond to the first- and second-order max-
ima, respectively. Notice particularly in the dark picture that one of the bright 
spots is slightly beyond the edge of the screen, and the spot that is not part of 
the pattern on the screen is where the laser strikes the CD.

The geometry of the situation is shown in the following diagram that 
describes the diffraction pattern in detail.

(continued)
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where y is the distance between the central and the first-order maximum;  
L is the distance between the CD and the screen, θ is the angle formed by the 
reflected rays for the same two maxima, and R is the hypotenuse of the right 
triangle formed by these distances.

Sin θ = 
y

R
, and using the Pythagorean theorem, R2 = y2 + L2

So R = √y2 + L2, Hence sin θ = y/√y2 + L2

And using Eq. 6.2
sin θ = ± m λ/d, we solve for d (which in this case corresponds to the spac-

ing between the CD tracks)
d m= ± l q/ sin
since we are using the first-order maximum (m = 1)
d y L y L y= + = + ( )l l2 2 2 21/ / A
the two distances y for the first-order maximum should be averaged before 

using the value of y in the equation.
(II) Determining the wavelengths of chosen colors from the visible 

spectrum
In this part a light source is placed behind and above an observer who then 

moves the CD gradually from a distance of roughly 10 cm in front of the face, 
making sure that a spectrum appears on the surface of the disc. You should 
practice moving the disc slowly back and forth to confirm that the spectrum 
appears more than once, since contrary to the laser, instead of dots represent-
ing the maxima the light source now produces spectra that appear at values of 
m = ± (1, 2, 3,…) from the center of the disc. It is imperative that the disc 
surface be kept perpendicular to the distance from the eye so as to ensure 
consistency in the way the spectra appear. When a spectrum is clearly 
obtained, move the disc until the particular color region chosen as the wave-
length to be determined, is just at the outer edge of the disc.

Additionally, in this part the distance from the light source to the observer 
should be about 10–20 times that of the distance between the observer and the 
position of the CD.

(continued)
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Experimental setup to obtain the desired spectrum from the light on 
the CD.

When the disc is at the point where the chosen color (wavelength) is on the 
outer edge of the CD, the geometry in detail is shown below

The relationships used before are still valid, except that instead of measur-
ing y directly we must use instead the diameter of the CD, since the central 
maximum falls on the hole of the disc. Thus

Sin θ = 
y

R
, and y = D/2 (half the CD diameter)

And using the relationships from before

sin / / / / /q = + = +D D L L D2 4 1 1 42 2 2 2

and sin θ = ± m λ/d, with m = 1

(continued)
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 Application to Sound

The bending of waves around obstacles also takes place when sound propagates, 
and as with light there are many applications. For example, if you are listening 
to sounds coming from a room through an open door, you will have noticed that 
you don’t have to be standing in the middle of the opening to hear the sounds. 
Even if you walk away from the door, you will still be able to hear the sounds due 
to the bending of sound waves around the obstacle represented by the door open-
ing. Additionally, one can hear the lower frequencies of sounds coming from 
ensembles such as a marching band, before one hears the higher pitch sounds. 
This is a result of lower frequencies bending or diffracting more than higher 
ones.

But why is this so? Generally speaking waves will diffract whenever their 
wavelengths are longer than the size of the obstacles that cause them to diffract. 
That is why the initial example in this chapter results in one being able to hear 
around obstacles, but unable to see around them. The wavelengths of light are 
much smaller than the sizes of the objects causing the diffractions in the example, 
so they end up being reflected rather than diffracted by objects ordinarily encoun-
tered everyday.

Consider the example of a loudspeaker producing sounds of various frequen-
cies within the audible spectrum (20–20,000 Hz); choosing two from among the 
range, such as 200 and 2000 Hz yields the following values for their 
wavelengths:

If we assume the speed of sound to be roughly 340 m/s, the 200 Hz sound will 
have a wavelength given by

v = λ f, and so λ = v/f = 
340

200

m s

Hz

/
 = 1.7 m

sin θ = λ/d, using the value of d obtained in (A) of Part I we can now find 
the wavelength

l q= = +d d L Dsin / /1 4 2 2

Write your calculations here and then fill in the value of the wavelength in 
the table below

Color Wavelength Range (nm)

Red 620–780

Violet 390–455

Reflections

 (1) What values of the ranges are your wavelengths closest to?
 (2) What do you consider the main sources of error in this experiment?
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Exploratory Task
Contours are graphical representations of data where the values of certain 
quantities are constant, but there are also changes between the contours them-
selves. You may have noticed contours appearing on weather reports showing 
the values of temperature or air pressure. There are many possible uses of data 
collected and displayed as contours.

One important property of contours is that they are constructed from data 
points displayed and connected whenever they have the same value. Since 
contours represent numerical data they can overlap, but not intersect. In other 
words, unlike waves contours cannot go through each other. The following 
figure illustrates what contours look like in general.

The two contours shown indicate values that are the same for each curve, but 
the curves themselves differ in value. The changes in value could be an increase 
or a decrease, and can be shown changing inward or outward in the figure.

In this experimental task measurement and representation as contours 
(lines of constant value) for sound intensity (in dB) as two tones of different 
frequency are emitted, and as the measurements are taken progressively farther 
from the source.

Using a sound level meter (either a microphone or a phone app) one can 
determine on a predetermined grid what the pattern of propagation for sounds 
of different frequencies is, to determine which one diffracts more.

 

whereas the 2000 Hz sound will have a wavelength

λ = v/f = 
340

2000

m s

Hz

/
 = 0.17 m or 17 cm

A typical loudspeaker capable of producing such sounds will definitely be larger 
than 17 cm and so will send out waves that will spread out more for the longer 
wavelengths than for the shorter ones. This particular property will be explored in 
the next experimental task.

(continued)
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Inquiry-Based Investigation
We are familiar with many examples of the use of sound in nature by other 
species besides humans. From insects to whales there are many accounts 
and descriptions of their use of some of the properties exhibited by sound 
waves, particularly for navigation, hunting, and echolocation, to name a 
few. It is known that elephants and bats, to choose two examples from the 
animal kingdom, use ultrasonic (beyond the higher limit of the audible 
range), and infrasonic (beyond the lower limit) for communicating and/or 
hunting purposes.

 1. Determine the range of the dimensions of typical objects animals encoun-
ter in their habitats, such as average tree widths, rock sizes, and small 
mounds that they interact with on a regular basis.

 2. As stated before, generally speaking waves having wavelengths shorter 
than the objects they interact with will be reflected, and waves with longer 
wavelengths than those objects will be diffracted rather than reflected.

 3. Use 340 m/s for the speed of sound in air as an approximation, the audible 
frequency range as (20–20,000 Hz), and choose an infrasound frequency 
of 15 Hz to determine the wavelength of the waves that could be used by 
one of the two groups of animals chosen (elephants and bats). Based on 
your answer for the wavelength, which one of the groups do you conclude 
would use these waves, and for what purpose is the sound used?

 4. Now choose an ultrasonic frequency of 50,000 Hz to determine the wave-
length of the waves that could be used by the other chosen group of ani-
mals. Which one of the groups do you conclude would use these waves, 
and for what purpose is the sound used?

 5. Reflect on your results by writing a short paragraph describing how the 
two groups of animals would specifically go about using such waves.

 1. Sound of a given frequency is produced; determine a location where the 
loudness level of sound has a specific value in dB, and repeat the measure-
ment for other locations that have the same loudness level.

 2. Mark the locations on a grid and then translate the physical measurements 
onto a model on paper where the points having the same loudness level can 
be connected with a line, this will be the first contour.

 3. Repeat the measurements for sound of a higher frequency than the first one.
 4. Construct the second contour and compare the spreading with that of the 

first one. What do you notice that is different in the spreading?

6 Diffraction
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    Chapter 7   
 Polarization                     

          As in the social context, polarization implies a preferred orientation or direction, or 
even a partial perspective on an originally impartial one. The effect of polarization 
is to alter a pre-existing condition that shows no preference for the way things are, 
or that has no particular direction or way for objects to move. This is essentially the 
way one can see  waves   as they would appear to oscillate in all allowed directions, 
and of course this has implications for the types of  waves   that can do that. 

 Exploratory Task 
 Use the  simulation   available at   https://phet.colorado.edu/en/simulation/legacy/
radio-waves     

 Make sure the screen looks like the fi gure below 

      

(continued)

https://phet.colorado.edu/en/simulation/legacy/radio-waves
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    Transverse   waves result from  oscillations   that are perpendicular to the direction 
the wave travels whereas  longitudinal   waves are by defi nition already constrained 
to move in the way the  oscillations   occur. An un-polarized or non-polarized wave 
would exhibit the property of  oscillations   in every direction allowed, and the fi ltering 
effect, which is the result of polarization, would decrease the amount of  oscillations   
in certain directions. Figures  7.1  and  7.2  demonstrate how polarization occurs.

    Figure  7.3  demonstrates why  longitudinal   waves like  sound   cannot be polarized; 
the  oscillations   being along the same direction as the wave travel allow the wave to 
be  transmitted   regardless of the orientation of the slits.

   There are innumerable uses of polarization with  electromagnetic   waves, so we 
shall concentrate on the  applications   that concern  light  . 

 Figure  7.4  shows the reason why electromagnetic  waves   can be polarized. In reality, 
the  oscillations   should occur in all directions, so the actual shape of an un- polarized 

  Fig. 7.1    A  transverse   wave moving to the right as represented by the  dashed arrow ; the  other 
arrows  illustrate the  oscillations  . The slit on the right will allow the passage of the wave since the 
orientation of its opening is along the same direction as the oscillations, namely along the vertical 
direction       

    Now click on Oscillate and describe what you see after a few seconds; 
what reasons can you offer for what you observe happening? 

  Fig. 7.2    The same wave will be blocked by the orientation of the slit’s opening being horizontal, 
whereas the  oscillations   are vertical       

  Fig. 7.3    The  arrows  now represent  oscillations   along the same direction as the wave travel, a 
longitudinal wave; in this case they will all go through regardless of the orientation of the slits       
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 electromagnetic   wave should be visualized as a series of connected footballs. 
Polarization can be accomplished in several different ways: by  absorption  , by 
 refl ection  , by double  refraction  , and by  scattering  . In each case, the number of oscil-
lations on a plane perpendicular to the direction of wave travel is reduced. Figure  7.5  
shows the details of a non-polarized wave.

       Polarization by  Absorption   

 Polarization by absorption consists of using fi lters made of  materials   whose  molecules   
have been stretched along a chosen direction, and then allowing un-polarized waves 
to go through such fi lters. The orientation of the fi lter determines the amount of fi lter-
ing or polarization, from a  minimum   to a  maximum   amount of blocked  oscillations   in 
a repetitive way. You can visualize this effect by looking at Fig.  7.1  and imagining the 
slit gradually rotated from its  position   in that fi gure, to the one in Fig.  7.2 . If you were 
to continue rotating the slit until it returned to its original position, you would see the 
reverse of what happened before, namely an increase from a  minimum   amount of 
 transmitted   oscillations to a  maximum  . 

  Fig. 7.4    An  electromagnetic   wave is clearly seen as consisting of  oscillations   of electric and mag-
netic  fi elds   along mutually perpendicular planes. One can assume the electric fi eld  oscillations   to 
be represented by the  vertical arrows , and those of the magnetic  fi eld   to be represented by the hori-
zontal ones, those that appear to be going into and coming out of the page. The  dashed arrow  
represents the direction of travel of the wave       

  Fig. 7.5    An un-polarized or non-polarized  transverse   wave is represented by the helical pattern 
above, where the  two shorter dashed arrows  point along the plane of the  oscillations  , whereas the 
 long dashed arrow points  along the direction of  propagation   of the wave. The set of   solid     arrows  
drawn on the fi rst circle are part of an infi nite number of oscillations covering the plane, and they 
would point in every direction on it       
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    Polarization by  Refl ection   

 Polarization by refl ection can be illustrated by Fig.  7.6 .
   Figure   7.6     shows polarization by refl ection as occurring whenever an un- 

polarized wave is incident upon a regular  surface  , and partial  transmission   and 
refl ection take place. The angle of incidence and that of refl ection are equal, thus 
ensuring complete polarization along the direction of the plane of the  surface  . The 
angle of  refraction   is smaller, although partial polarization in all directions takes 
place. The number of arrows is used to illustrate the amount of polarization, besides 
their  orientation        .  

    Polarization by Double  Refraction   

 Polarization by double refraction is shown in Fig.  7.7 .
   Figure  7.7  shows double refraction leading to polarization. The originally un- 

polarized wave is incident upon a transparent  material   that has two different indices 
of refraction. Since the  transmitted   waves travel at different  speeds   due to the 
 different indices, they emerge polarized and producing a double image. Notice that 
the two emerging waves have a polarization direction that is mutually 
perpendicular.  

  Fig. 7.6    Polarization by  refl ection   occurs when an un-polarized wave is incident upon a  surface   
where both  transmission   and refl ection take place. The refl ected wave is completely polarized 
along the direction of the plane of the surface, whereas the  transmitted   one is partially polarized in 
the other directions       
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    Polarization by  Scattering   

 Finally polarization by scattering results from un-polarized light being incident 
upon a  material   made of systems of  particles  , like clouds, where the  electrons   absorb 
and reradiate the light. The most important instance of polarization by scattering 
accounts for the different colors of the sky, and in particular why it is blue, as shown 
in Fig.  7.8 .

   When the electric  fi eld    component   of sunlight interacts with an atom or a  mole-
cule   of air, it sets it in  oscillatory    motion   with a  resonant    frequency  . This  oscillatory   
 motion   leads to a type of  radiation   like that coming from an antenna, and it is along 
a preferred direction, which is the polarization effect. 

 Figures  7.9  and  7.10  explain the phenomenon of a blue sky, and the appearance of 
the  sun   at dusk, when it is low on the  horizon  . In Fig.  7.9  the  scattering   that results in 
the blue color is shown as an  interaction   of an originally un-polarized  electromag-
netic   wave (sunlight) with a  molecule      in the atmosphere. In Fig.  7.10  the reddening 
of the sky is shown from the perspective of observers on the  Earth  . Two observers 
are at points A and B, respectively, and they will see two different colors of the sky. 
The difference in the type of scattering depends on the  wavelength   of the light and 
the size of the  particles   that scatter it. The colors one observes in the sky depend on 
scattering; recall that the range of wavelengths for visible light is approximately 
(400–750) nanometers (nm). When a deep blue sky is seen, that comes from 

  Fig. 7.7    Polarization by double  refraction   occurs whenever an un-polarized wave is incident upon 
and goes through a  material   with two different indices of refraction. These materials are called 
  birefringent   ; since the fi rst two refracted waves travel in different directions, the emerging waves 
will be mutually perpendicularly polarized and will produce a double image       
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preferential scattering of  photons   of shorter  wavelength   in the visible  spectrum  . 
 Particles   larger than 750 nm scatter all  colors   equally, such as those making up clouds 
(1000–100,000)  nanometers  .

    The reason why one sees a reddish sky when the  sun   is near the  horizon   is that 
the light waves are traveling a longer  distance   through the atmosphere, and they 
have already been scattered toward the shorter  wavelengths  . An observer will see 
the scattering resulting now from the longer wavelengths of the light  spectrum     , 
which is the red end.           

  Fig. 7.8    The fi gure shows two examples of polarization by  scattering  : the  blue color  of the back-
ground sky, and the  white color  of the  clouds   in the foreground       

  Fig. 7.9    The  scattering   of an un-polarized  electromagnetic   wave (the one on the left) by an air 
 molecule   can be shown by assuming that  photons   are oscillating in two directions. The  oscillations   
of the electric  fi eld   are along the vertical direction; the original wave has a  wavelength    λ  1 , and upon 
striking the  molecule   the electrons will scatter the shorter wavelength  photons   producing a polar-
ized wave of shorter  wavelength    λ  2        
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 Conceptual Task 
 In order to get an idea of the scale needed in the next  experimental   task, con-
sider that the visible range of the  electromagnetic    spectrum   is roughly 
400–740 nm. 

 1 nm = 1.0 × 10 −9  m

•    When an object is said to be 10 micrometers (μm) in size, and knowing that 
1 μm = 1.0 × 10 −6  m

    (a)    How big is the object in nm?   
   (b)    How many times larger than the object is the average  wavelength   in 

the visible  spectrum     ?    

•     When an object is said to be 0.01 μm in size

    (c)    How big is the object in nm?   
   (d)    How many times smaller than the object is the average  wavelength   

from b)?        

  Fig. 7.10    Description of the observation of the color the  sun   appears when it is low on the  horizon  . 
The sun is drawn as it would look at a very long  distance   from the  Earth  , and so the diagram is not 
to scale. In part ( a ) an observer at A sees a blue sky, whereas one at B will see a reddish one due 
to two factors: the sunlight travels a longer distance through the atmosphere, and the blue color has 
already been scattered, thus creating the familiar view at  dusk   ( b )       

(continued)
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 Exploratory Task 
 (The following activity is based on the educational types provided by NASA 
(  http://www.nasa.gov/centers/goddard/education/index.html    ) 

   Scattering     of Light and    Particle     Size Determination  
 As previously discussed in the chapter on  diffraction  , light of certain  wave-

lengths   can either be refl ected or diffracted, depending on the size of the 
objects with which the light  interacts  . If the wavelength is longer than the 
dimensions of the object, the light will be diffracted (provided there is no 
signifi cant difference in the scale of the dimensions and the  wavelength   in 
question). If the wavelength is shorter than the  dimensions   of the object, the 
light will be refl ected. 

 In the case of  scattering  , whenever the  wavelength   of the light  interacting   
with the objects that scatter it is kept constant, then a similar situation to that 
of the previous paragraph takes place. In this instance, for a constant wave-
length the size of the objects  matters  . 

 Given the range of wavelengths for the visible part of the  electromagnetic   
 spectrum   where light is used to explore  nature   (400–750 nm), there is also a 
range of sizes for objects to either refl ect or scatter light. Objects larger than 
about 10 μm refl ect light, and those about 1/100 μm in size scatter light in all 
directions. However, equal amounts of light are scattered back toward the source 
and away from the source, and lesser amounts of light are scattered in other 
directions. Objects about 1 μm in size can exhibit strong forward  scattering   and 
weak backscattering.

•      Materials     needed: 

    1.     Laser   pointer.   
   2.    Two clear plastic or glass  water   bottles or cups having vertical sides, 

not slanted, and having a range of 5–10 cm in diameter.   
   3.     Water  , milk (1/20 teaspoon per 12 oz of water), and fl our (less than or 

equal to 1/4 teaspoon—a “pinch”—per 12 oz of  water  ).   
   4.    Eye dropper.   
   5.    A  rotating   platform or other means to rotate a container.   
   6.    Masking, duct, or electrical tape    

•      Procedure     

 Attach a piece of tape to one side of each container. Fill one  container   with 
 water   and place it on the rotating platform. In the other container, prepare a 
highly dilute solution of milk, thoroughly mixed so the  water   is just slightly 
whitened. (Start with 1/20 teaspoon of milk per 12 oz of water; fi nd the right 
 proportions   by experimentation in advance.) Place the  laser   and sample bottle 
on the  rotating   platform. 

 Align the  laser   pointer so that the beam passes through the water bottle and 
projects onto the piece of tape on the far side of the container. (The tape will 

(continued)
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ensure that the laser beam is not projected farther into the room and perhaps 
into someone’s eyes.) This arrangement is similar to the wavelength determi-
nation in chap. 6. 

 Darken the room and project the laser beam through the container of plain 
water. Observe the brightness of the beam in the  water   as the platform is 
rotated. The beam should pass straight through and be invisible or nearly so 
from all directions except directly along the beam. 

 Next, project the beam through the dilute milk solution. Laser light  scatter-
ing   from tiny  particles   of milk will delineate the laser beam. The  intensity   of 
the beam is stronger or weaker according to the scattering properties of the 
milk particles (primarily their size) as the assembly is turned in front of fi xed 
observers. Observers should note how the beam reaches  maximum   brightness 
when they are looking in nearly the direction it is coming from. 

 Mix fl our with the plain  water   (less than or equal to 1/4 tea-spoon fl our per 
12 oz of water) in the fi rst container. 

 Project the  laser   beam through the dilute fl our solution. The  scattering   
properties of the milk and fl our solutions are different because there is greater 
variation in fl our  particle   size than in milk particle size. Store-bought milk is 
homogenized (its  particles   are reduced to the same size) so the cream stays in 
solution. With either mixture, notice how the beam  intensity   diminishes with 
 distance   (looking from the  side  ). 

 You may have noticed when you drive under certain conditions that bright 
headlights in fog may or may not help drivers, depending on  particle   size. 
 Refl ections   from large fog droplets make night visibility with bright head-
lights poorer than with dimmed headlights. 

   Predictions     Based on Results  
 Try other  materials   that will remain suspended in  liquid   for suffi cient 

amounts of time to allow for observations. First fi ll out the following table 
and predict whether or not the material will scatter light and thus be useful for 
 particle   size determination.

  Material     Prediction    Observed 

 Cornmeal 
 Cornstarch 
 Oat bran 
 Glitter 
 Salt 
 Sugar 
 Sprite 
 Diet Soda 

     Refl ections       :  

(continued)
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  Experimental   Task 
 Polarized waves are those ( transverse  ) where the waves vibrate in a specifi c 
direction. Polarization can be achieved by fi ltering some of the  vibrations  , 
such that only those aligned with the direction of the fi ltering mechanism will 
pass through. For the case of light waves, those waves that vibrate in the same 
plane as the polarizing  material   can pass through. 

 The most common method of polarization involves the use of a   Polaroid    
 fi lter . Polaroid fi lters are made of a special  material   that is capable of block-
ing one of the two planes of  vibration   of an  electromagnetic   wave. (Remember, 
the notion of two planes or directions of vibration is merely a simplifi cation 
that helps us to visualize the wavelike  nature   of the  electromagnetic   wave.) In 
this sense, a Polaroid serves as a device that fi lters out one-half of the vibra-
tions upon  transmission   of the light through the fi lter. When un-polarized light 
is  transmitted   through a  Polaroid   fi lter, it emerges with one-half the  intensity   
and with vibrations in a single  plane  ; it emerges as polarized light. 

      

      Experimental     Arrangement . Two  Polaroid   fi lters are used between a 
light source and a light sensor. The Polaroid fi lter closest to the light source is 
called the   Polarizer   , and the one closest to the light sensor is called the 
  Analyzer   . The objective is to keep the  Analyzer  fi xed, and  rotate   the   Polarizer    
a complete 360° to measure the  transmitted   light  intensity  . The light intensity 
is recorded by connecting the sensor to a device (computer or  interface  ) where 
the information can be recorded. 

(continued)
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    Detail procedure for turning the   Polarizer    while keeping the   Analyzer    
fi xed. 

 The  transmitted   light is linearly polarized by the Analyzer, and then its 
intensity is plotted as  relationships   between the light  intensity   and the angle 
of the Analyzer, as well as the time taken to turn it. 

  Procedure 

    1.    We fi rst determine the difference in light  intensity   when the sensor points 
directly at the light source, and then when a  Polaroid   fi lter is placed in 
front of the light sensor. Let’s test both fi lters to  ascertain   whether or not 
they are identical in their polarizing properties.

 Filter 
  Intensity   
without it ( I ) 1  

 Intensity 
with it ( I ) 2  

  Ratio   
( I ) 2 /( I ) 1   % [( I ) 2 /( I ) 1 ] × 100 

 % Difference 
from (0.50%) 

 1 
 2 
 Average 

       2.    Place the two  Polaroid   fi lters as shown in the fi rst fi gure; while keeping the 
 Analyzer   fi xed, turn the polarizer as shown in the detailed procedure and 
record your observations. Record the  intensity   for every 15° change, every 
5 s until you complete one whole  rotation   or 360°.   

(continued)
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   3.    Plot two graphs of the  intensity  , fi rst as a function of the angle, and then as 
a function of the time.    

   Observations (For Both Parts)  
  Processing The Data 

    1.    Describe the graphs obtained; do they produce a wave pattern?   
   2.    For what values of the degree measure was the light  intensity   a  minimum   

and a  maximum  ?   
   3.    Summarize what you consider the sources of error in the  experiment  .     

7 Polarization
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Chapter 8
Changes in Properties of Waves

 The Doppler Effect

We learned in chapter two that the frequency of a wave is not a property of the 
motion of its components as the wave travels. As waves move through various mate-
rials their speeds, amplitudes, and wavelengths can change, but not their frequencies 
and correspondingly their periods. These are strictly properties of the manner in 
which the waves are generated. In other words, the frequency of a wave is constant, 
unless it is changed at its source. As with most statements in science, there are 
exceptions. An important one is the so-called Doppler effect (named after its discov-
erer Christian Doppler), an apparent change in frequency produced by motion. The 
use of the term apparent is meant to highlight the fact that it is relative to something. 
In this case the motion of either the source or the observer will cause a perceived 
change in frequency; however, the change isn’t always there, it is only an effect 
produced by motion. Figure 8.1 shows the Doppler shift for sound waves.

As we shall see in this chapter, the apparent change in the frequency of signals 
generated by a moving object can be used for a great number of applications. 
Ordinarily speaking, to determine the average speed of a moving object one needs 
to know both the distance traveled and the time taken to travel it. The use of the term 
average implies an approximation since the object’s speed may change and so deter-
mining its instantaneous speed proves more challenging. Of course, if the speed of 
the object is constant, the average and instantaneous values are identical.

Using the Doppler shift in frequency can help to determine a good approxima-
tion to the instantaneous value of the speed of a moving object, or at the very least 
a more accurate value than just the average.

The usefulness of the Doppler effect lies in its many applications to a variety of 
situations, where knowing the shift in frequency enables one to determine the 
speed of the object that produced the waves. This is true of such different situations 
as the flow of blood in the human body in physiological and anatomical studies, the 
motion of a speeding automobile in forensic investigations, and the motion of an 
air mass in meteorological forecasts. In order to appreciate the applicability of the 
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Doppler effect, we need to look at the quantitative determination of the values 
involved in the variety of situations where the shift in frequency provides information 
about the motion of the objects in question.

We can state the general relationship between the frequency of a source of waves 
(ƒs) and the observed frequency (ƒ0) when detected as either the source or an 
observer moves. The relationship takes into account the fact that when an observer 
moves either towards or away from the source, the speed of the waves relative to the 
observer is either larger or smaller than the original one in the equation v = λ ƒ. 
Correspondingly, when the source moves either towards or away from an observer, 
the wavelength of the waves changes in a similar way to the speed for a moving 

Fig. 8.1 Doppler shift of sound waves emitted by a source indicated by the arrow, as it moves to 
the right. As the waves reach the observer indicated by the dot to the right of the source, the spacing 
of the lines demonstrates that the frequencies are unequal. In the top part the observer measures a 
higher frequency (lines are closer to each other) as the source approaches it. In the bottom part the 
frequency measured by the observer is initially higher, and then lower after the source has passed 
it (the lines are more closely spaced and then further apart). However, the frequency of the source 
remains constant (lower scale in both parts)
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observer. In other words, when there is no motion ƒ = 
v

l  from the above relationship. 

However, when there is motion the observed frequency is ƒ0 = 
D
Dl
v

.

When one combines both the motion of the source or that of the observer, the 

expression for the observed frequency becomes ƒ0 = 
V V
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In the above equation v is the speed of the waves, Vo is the speed of the object, 
and Vs is the speed of the source. The convention is to use positive (+) values for 
both Vo and Vs when motion is towards each other, and negative (−) when motion is 
away from one another.

 Worked Example

An ambulance passes you by and you can measure the frequency as 560 Hz; if the 
actual frequency of the siren is 500 Hz, and you are stationary, how fast is the ambu-
lance moving? We use 343 m/s as the speed of sound in air, and the Doppler formula 
states that
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s.

 

ƒ0 = 560 Hz, ƒs = 500 Hz, V0 = 0 m/s, solving for Vs (the speed of the source, the 
ambulance)

Rearranging the equation above we get

 
V V V– s s( ) =0  

Expanding the term V ƒ0 − Vs ƒ0 = V ƒs

And solving for Vs = V (ƒ0 − ƒs)/ƒ0

Substituting the given values
Vs = (343 m/s) (560 Hz–500 Hz)/ 560 Hz = 36.8 m/s

Example
A bat, flying at 5.00 m/s, emits a chirp at 40.0 kHz. If this sound pulse is 
reflected by a wall, what is the frequency of the echo received by the bat? 
(vsound = 340 m/s.)

ANS: 41.2 kHz

Worked Example
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Other examples using the Doppler formula can be worked out by going to the 
Explore Learning Gizmo website

https://www.explorelearning.com/index.cfm?method=cResource.dspResourceE
xplorer&browse=Science/Grade+9-12/Physics/Sound.

You can use the formula to substitute the values given for the source frequency, 
the speed of the source, and the speed of sound. Note that the speed of the observer 
is zero in the formula, since the icon where the observed frequency is measured 
corresponds to an observer at rest. Select the box for “observed frequency” and 
then run the simulation. Does the value of the observed frequency match your 
calculated one?

You can practice by changing the given values, using the formula, and then run-
ning the simulation to compare the values.

Virtual Activity
The Doppler Effect and the Sonic Cone

The table shows six cases describing the emission of sound waves from a 
moving source towards the point on the right. The speed of the waves is con-
stant (340 m/s), and each trial shows on the third column the effect of chang-
ing the speed of the source. Every trial shows the waves as they are about to 
be received at the other point.

 1. Describe what the diagrams indicate about the changes in the speed of the 
source.

 2. When does a cone first appear?
 3. What happens to the shape of the cone as you continue to increase the 

source’s speed values?

Trial Speed of source (m/s) Result

1 170

(continued)
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Trial Speed of source (m/s) Result

2 300

3 340

4 400

(continued)
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Trial Speed of source (m/s) Result

5 500

6 680

6 800

Exploratory Task
Using the Doppler effect to determine experimentally the Speed of a 
Moving Object

The speed of a moving object can be determined in various ways; the sim-
plest case would be when the object moves with a constant speed. In general, 
when an object travels a distance D in a time t its speed is given by the 
formula

Speed
Distance

time
= =. V

D

t

(continued)
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We can construct an experimental task where an object moves with a constant 
speed by having it move on a circular path. In this case the distance is the 
circumference, and the time is the period of the motion.

Hence V = 
2pr
T

, where r is the radius of the circle described by the motion 
of the object.

We can also determine the speed of a moving object by using the Doppler 
effect.

Doppler Effect Formula for General Cases

• The source and the observer could both be in motion; the observed 
frequency f0 is given by the equation

• f f
V V

V V0
0=

+
-

æ

è
ç

ö

ø
÷s

s

• where fs is the frequency of the source, v is the speed of the signal, vo is the 
speed of the object, and vs is the speed of the source.

• If either one is approaching we use positive values for vo and vs.
• If either one is moving away (receding) from the other we use negative 

values for vo and vs.

Background Example
An alert student stands beside the tracks as a train rolls slowly past. The 

student notes that the frequency of the train whistle is 480 Hz when the train 
is approaching, and 440 Hz when it is moving away (receding). Using these 
frequencies the train’s speed can be calculated.

Using

f f
V V

V V0
0=

+
-

æ

è
ç

ö

ø
÷s

s

V0 = 0 (the observer is at rest)
Vs = Vt (the speed of the source is that of the train)

V = 340 m/s for the speed of sound

Approaching: 480 Hz = fs 
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Dividing the first equation by the second:
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 = 1.09 (The fs terms drop out)

Inverting the right side of the equation
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1.09 = 
340

340
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÷ , cross-multiplying

(1.09) (340 m/s − Vt) = 340 m/s + Vt

370.6 m/s − (1.09) Vt = 340 m/s + Vt, rearranging the equation
370.6 m/s − 340 m/s = Vt + (1.09) Vt

Vt (1 + 1.09) = 30.6 m/s
Vt (2.09) = 30.6 m/s

Vt = 
30 6

2 09

. /

.

m s
 = 14.6 m/s is the speed of the train.

To practice using the Doppler formula before undertaking the experimen-
tal task, determine the speed of a moving object where the following data 
were collected. An object moving on a circular path emitted a beeping sound 
where the frequency varied between 3500 Hz and 3200 Hz. What was the 
speed of the moving object?

Procedure
(Students work in groups stationed at various points near the circular path of 

an object that emits a sound (like a beep). The object is held securely by a string 
and made to rotate by a person holding the string at the center of the circle.)

 1. Determine the speed of the moving object by measuring the length of the 
string (the radius) and then measuring the time for a given number of rota-
tions (10). Measure the time for three trials and then average the result. 
Construct a table showing the data collected.

 2. Divide the average time for 10 rotations by 10 to get the period of each 
rotation.

 3. Use the equation V = 
2pr
T

 to get the speed of the moving object.

 4. Determine the speed by using a microphone interfaced to a device, such as 
a Vernier LabQuest to find the frequency of the beeping sound that the 
rotating object produces. Three frequency values are needed:

 (A) The frequency of the stationary object. (This frequency is only needed 
to verify that the approaching and receding frequencies are suffi-
ciently different.)

 (B) The frequency when the object is approaching the microphone.
 (C) The frequency when the object is moving away from the microphone. To 

ensure sufficient accuracy these frequencies should be measured three 
times each, and then averaged. Construct a table for the data collected.

 5. Use the Doppler formula as in the background examples to determine the 
speed of the rotating object.

 6. Discuss the results of both procedures, and include a reflections section 
with specific references to the various sources of error.

(continued)
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 Application to Light

The Doppler shift can be shown as it occurs in the case of light; the emission 
spectrum of Hydrogen is shown in Fig. 8.2a as it appears in the laboratory (at rest). 
The same spectrum is shown as it appears when Hydrogen is detected in the spectrum 
of stars and galaxies.

Figure 8.2 shows what happens to the Hydrogen spectrum. The lines in part (a) 
for a cloud of Hydrogen at rest appear around 430 nm for the blue, around 490 nm 
for the teal or blue–green, and around 650 nm for the red. In part (b) when the 

Fig. 8.2 The figure shows what happens in the case of light; the spectrum of Hydrogen gas 
observed in the laboratory shows lines of varying intensity. In part (a) the same lines are observed 
in the spectrum detected in a cloud of Hydrogen gas that is not moving with respect to an observer. 
In part (b) the cloud is moving away from the observer at a speed about 10 % of the speed of light. 
The spectral lines are shifted towards the longer wavelength or red end of the spectrum

Write a Report including the following sections:

 (A) Objective
 (B) Brief procedure
 (C) Data, calculations, and results
 (D) Reflections—Analysis and discussion of sources of error.

Application to Light
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spectrum is seen in a cloud that is moving and the same lines are now shifted to the 
right; the blue line now appears at around 480 nm, the teal line at around 540 nm, 
and the red at around 730 nm. The fact that they are all shifted towards the longer 
wavelength end of the spectrum is an indication that the cloud is moving away from 
the observer.

The longer wavelength end is the red part of the visible spectrum, hence the use 
of the term redshift in astronomy. It is one of the most valuable pieces of informa-
tion available to astronomers and other scientists attempting to understand the 
large- scale properties of the universe.

Exploratory Task
Since radio signals are electromagnetic waves they can be used in radar appli-
cations; the Doppler imaging of clouds and air masses is used for weather 
prediction. Use an online source of information, such as The National Weather 
Service to write a brief explanation of how the Doppler effect is utilized in 
this case.

 Human Hearing and the Subjective Perception of Changes 
in Sound Intensity

The intensity, I, of a wave is defined as the power per unit area. This is the rate at 
which the energy being transported by the wave transfers through a unit area per-
pendicular to the direction of the wave. A point source will emit sound waves 
equally in all directions, which can result in a spherical wave where the power will 
be distributed equally through the area of the sphere.

Figure 8.3 shows the structure of the human ear. The part that concerns us is the 
curled up membrane in the inner ear. It is called the basilar membrane and known to 
have a length of approximately 35 mm.

 Place Theory of Hearing

The theory is based on the observation that two tones separated by a change in fre-
quency that either doubles or halves the initial frequency (an octave interval such as 
512 Hz/256 Hz = 2/1 = 4/2 = 6/3 = 8/4) corresponds to a length separation of about 
3.5 mm along the basilar membrane, within the human audible range (20 Hz–20 KHz). 
Approximately ten such intervals covering the entire membrane have been identified, 
thus making the whole membrane (35 mm) equal to roughly ten octaves.

Figure 8.4 shows a comparison between two relationships. In part (a) the rela-
tionship is that between the magnitude of ground movement and energy released 
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during a seismic event. This relationship constitutes the basis for the Richter scale, 
which even in its modified version is used to determine the effect of earthquakes. 
Note that the growth is exponential, and the energy difference between a 1.5 and a 
2.5 magnitude earthquake is about 300 units; whereas between a magnitude 2 and 3 
earthquake the energy difference is 900 units. In other words, while the difference 
in magnitude is the same (1 unit), the energy difference is much greater between 
larger magnitudes. Thus an earthquake of magnitude 3 releases 900 times the energy 
of a magnitude 2 one, or it can be said to be 900 times stronger.

Part (b) shows a similar relationship between the frequency changes along the 
basilar membrane and the length of the membrane where there is a doubling of the 
frequency. Using the frequencies of several notes from the musical scale we get
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The graph shows that for every doubling of the frequency the distance along the 
basilar membrane that responds to the change is roughly 3.5 mm. The distance in 
question is that between hair-like cellular structures that rise in the membrane and 
that lead to nerve responses correlated with frequency.

Fig. 8.3 The human ear can be divided into the outer, middle, and inner ear

Place Theory of Hearing
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Fig. 8.4 Comparison of the scales used for both seismic energy release as a function of the 
magnitude of the ground movement (a) and the frequency response of the human ear as a function 
of the length along the basilar membrane (b)

The dependence of human responses to sound intensity changes based on 
frequency needs an expression as a function of this doubling of the frequency, so the 
relationship cannot be linear. Consequently, we can express as a power function the 
relationship between variables where one doubles constantly as the other one 
increases by a fixed amount. However, as you can see from Fig. 8.4a, a magnitude 7 
earthquake would require extending the axes and it would be 10 million times stron-
ger than a magnitude 1 earthquake. Clearly the scale of one of the axes needs to be 
reduced to display such large numbers in a comparable proportion to the values of 
the other. There is a relationship between power and logarithmic functions; they are 
the inverse of each other. In other words, the inverse function of y = bx is y = logb x. 
Therefore, a relationship expressed as a function that yields a set of values expressed 
as powers can also be expressed by a logarithmic function that expresses these val-
ues as regular numbers.
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The human ear is known to respond to changes in air pressure where the intensity 
can be expressed in W/m2 but the range between what is audible (called the thresh-
old of hearing) and what is bearable (the threshold of pain) is about a trillion times, 
or 1.0 × 1012 times. To reduce such a huge range of values to a scale where the sound 
level can be expressed in a more manageable way, we can use an expression that 
involves a logarithmic function.
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where I is the given value of the intensity, and I0 is the threshold of hearing (the 
lowest possible sound) = 1.0 × 10−12 W/m2

It is imperative to clarify at this point that the use of SL as the sound level is 
meant to represent what we hear, not the actual energy content of the sounds, which 
in some textbooks is expressed in terms of loudness curves in addition to intensity 
values. The emphasis on the use of sound level for SL is to differentiate it from that 
usage in this context.

This human response can be represented by curves that are constant in intensity 
(energy content), but variable in sound level (hearing volume) depending on the 
frequency at which they are heard. The curves are based on the work of Fletcher and 
Munson at Bell labs in the 1930s, and were made by asking people to judge when 
pure tones of two different frequencies were equally loud, the curves being the 
average results from many subjects. Several of these curves are shown in Fig. 8.6; 

Fig. 8.5 Representation 
showing that the ear canal 
acts as a 2.5 cm close- 
ended tube

Place Theory of Hearing
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the lowest three beginning with the threshold of hearing, a medium one representing 
typically heard everyday sounds, and the highest one at the threshold of pain.

The lowest curves indicate that low energy sounds are not all heard equally at 
low frequencies, and the highest one is painful at almost all frequencies, represented 
by its increased flatness. The common dip of all the curves is a result of the shape of 
the ear canal.

Figure 8.5 shows a representation of the ear canal as a tube closed at one end. 
Note that the length of the canal is ¼ of a wavelength, or L = λ/4 → λ = 4 L = 4 
(0.025 m) = 0.10 m

v = λ ƒ → ƒ = 
v

l
 = 

340

0 10

m s

m

/

.
 = 3400 Hz, which is the fundamental frequency ƒ1. 

The next frequency is ƒ3 (3ƒ1) = 3 (3400 Hz) = 10,200 Hz.
Note that these values correspond to the dips in all the loudness curves shown. 

This is the result of two resonances seen as the anti-nodes (A), or maximum 
amplitudes. That is why the ear exhibits such sensitivity at those frequency values 
(3400 Hz and 10,200 Hz) as shown in Fig. 8.6.

Fig. 8.6 Relationship between intensity levels and sound levels perceived as the frequency of the 
sounds changes. The entire range of audible intensities (one trillion times difference in W/m2) can 
be condensed into a manageable scale in dB by using a logarithmic relationship with the base of 10. 
The two resonant frequencies (3400 Hz and 10,200 Hz) where the ear is most sensitive are shown
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Restating the formula SL = (10 dB) log10 (
I

Io
) we can see from the above graph 

that when a given intensity is I = 1.0 × 10−12 W/m2, the value of SL is 0 since log10 
(1) = 0. If the given intensity is 1, then SL = (10 dB) log10 (1/1.0 × 10−12) = (10 dB) 
log10 (1.0 × 1012) = 120 dB, as can be determined from a logarithm calculator table or 
a calculator with logarithm functions. These two values correspond to those on the 
left vertical axis. The table below illustrates how the formula gives the correspond-
ing values of SL for some given intensities, and how many times louder these values 
are compared to other levels, something that is not very intuitive on first inspection. 
As an example, consider that a decrease of 10 dB in SL is equivalent to half the 
volume but 1/10th the intensity.

 Useful Relations

Log ab = log a + log b
Log a/b = log a − log b
If y = Ax, then x = logA y
In other words, if y = 10x, then x = log y
As Table 8.1 shows for the values indicated, a doubling in sound level corre-

sponds to an increase in sound intensity of ten times; this is true regardless of where 
on the decibel scale the values change. Suppose operating a portable vacuum cleaner 
produces a sound such that the sound level is measured at 60 dB, how much would 
the sound made by four identical machines be?

Table 8.1 A comparison between ways to classify changes in sound energy. As changes in 
intensity, and as changes in sound level or volume

Sound intensity (W/m2) Loudness level change (dB)
Volume loudness (how many 
times louder)

10,000 40 16

1000 30 8

100 20 4

10 10 2.0
4.0 6 1.52

2.0 3 1.23

1.0 0 1.0

Useful Relations
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 A Note of Caution about Solving Sound Level Problems

The use of the two scales that are connected through the logarithm function, the inten-
sity scale, and the sound level scale can be counterintuitive. When solving sound level 
problems, it is imperative that we understand the distinction that must be made 
between sound level differences, as opposed to sound intensity differences. In the 
previous example, the noise difference between one machine producing a sound level 
of 60 dB, and four such machines must be determined first in terms of the intensities. 
The real difference (the energy content) is between the intensities. The sound level of 
the four machines depends on what their collective intensity is; one may be tempted 
in the above example to simply multiply the 60 dB by 4, which would yield an 
unreasonable sound level (240 dB); this number would exceed the noise produced 
by a jet engine measured at a short distance from it. If we think about the result, 
would it be reasonable to expect that four portable vacuum cleaners would be noisier 
than a jet engine? (A look at a comparison chart of sound levels in decibels will 
convince anyone that a sound level higher than 200 dB isn’t physically possible.)

 Practice Problems

 (1) In a workplace a machine has a sound level of 80 dB, how many identical ones 
can be added before exceeding the federal noise limit of 90 dB?

Solution
We first determine the intensity value of the sound at 60 dB, by using the 
formula

SL = (10 dB) log10 (
I

Io
)

60 dB = (10 dB) log10 (
I

Io
), dividing both sides by 10 dB

6 = log10 (
I

Io
), using the last of the relations given above (if x = log y, 

then y = 10x)
I

Io
 = 106 → I = Io × 106

I = (1.0 × 10−12 W/m2) (106) = 1.0 × 10−6 W/m2

This is the intensity of one machine; four such machines will produce 
4.0 × 10−6 W/m2

And so the new sound level value will be

SL = (10 dB) log10 (
I

Io
) = (10 dB) log10 (4.0 × 10−6 W/m2/1.0 × 10−12 W/m2)

SL = (10 dB) log10 (4.0 × 106) = (10 dB) (6.6) = 66 dB
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 (2) If an orchestra produces a sound level of 85 dB, and a single violin produces 
70 dB, how does the intensity of the sound of the orchestra compare to that of 
the violin?

 (3) A busy street has 100 cars/min passing a given point during a weekday produc-
ing a sound level value of 70 dB; if the number is reduced to 25 cars/min during 
the weekend, what is the resulting sound level value?

Exploratory Task (I)
Noise exposure can be a serious matter if the levels approach high enough 
values on the decibel scale to cause discomfort, and there are specific regula-
tions concerning indoor noise levels that humans can be exposed to before 
harmful effects appear. We can use a sound level meter, or download an App 
that enables a phone to collect sound level values and determine the level of 
exposure in a given space.

The following table can be used as a reference to compare the readings 
collected during a given period, with what has been determined to be accept-
able indoor exposure.

Duration per day (h) Sound level (dB)

8 90

6 92

4 95

3 97

2 100

1.5 102

1 105

0.5 110

0.25 115

US Dept. of Labor
Occupational Safety and Health Standards
1910.95(b)(2)
Table G-16.

Exploratory Task (II)
Determining the relevance of measurements of decibel levels to the housing 
market

Use the article “Soundproofing for New York Noise” (The New York 
Times, Real Estate section, December 11, 2015) to determine three specific 
uses of sound properties introduced in the text so far, that are actively used in 
trying to address noise issues faced by apartment building tenants.

Practice Problems
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Chapter 9
Wave Propagation and Intensity Variations

All transfer of energy by waves obeys the same laws that can be stated for light and 
sound, particularly as it relates to the measurements of certain properties and the 
variables they depend on. The very first property is that of the inverse-square depen-
dence on the distance from a source of waves. This is of the utmost importance due 
to the similarity exhibited by the behavior of masses, charges, and systems made of 
these. The most commonly observed phenomenon is that displayed by the electric, 
magnetic, and gravitational forces. They all depend on the inverse-square of the 
distance between the interacting objects. This has far reaching implications for the 
way all forms of energy as radiation spread out and interact with matter.

Exploratory Task
For this activity you need to download an App (Sound Level meter) to your 
phone so that you can measure the sound intensity produced by the online- 
generated signals. Use a source of sound that can register a measurable level 
of loudness on a sound level meter App on your cell phone (such as Insta 
Decibel for the iPhone).

To carry out the tasks go to
http://onlinetonegenerator.com/
Select the 432 Hz tab and then change the frequency to 440 Hz. Position 

your phone as close to the sound source as possible. Play the sound produced 
by each of the four different tones and measure the sound intensity value for 
each tone with the Sound Level meter App running on your phone. Rank the 
tones from loudest to softest; use the loudest sound and position the phone 
with the Sound Level meter App running at selected distances from the source 
of the sound (computer/laptop/tablet) and record the loudness at each posi-
tion, so that you have at least six different values.

(continued)
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Begin as close to the source of sound as possible and then record the loud-
ness level at each position of the phone as you move it away from the source.

Plot a graph of the loudness as a function of the distance from the source, 
and draw the best-fit curve that connects the points.

What sort of relationship does your graph follow between the sound inten-
sity and the distance from the source?

Reflect briefly on the likely sources of error in this experimental activity.

There is a way to classify the different types of radiation that exist, similarly to 
the way we classified waves earlier on.

Experimental Task
Inverse-Square Dependence on Distance

Background
In this experiment we shall explore the relationship that exists between 

several properties of the physical universe and the distance between the 
objects that interact and that give rise to such properties. Among these are the 
inverse-square dependence on distance of the gravitational force between 
masses, and the dependence of light intensity at a surface on the distance from 
the source of light.

To begin please predict in two ways, as a statement and then graphically 
what the graph of light intensity measured at various distances from a source 
of light will look like as one moves away from the source. In this experiment 
we are using a light sensor to determine the light intensity as read by the sen-
sor, as we move it away from the source of light.

I. Using a Light Source
Apparatus needed for the experiment (the light source may be different 

than the one shown but this will not change the setup). The activity can also 
be performed by using an App that measures light intensity (such as Lux 
Camera for the iPhone), and then placing the phone at respective distances 
from a light source. The data can then be collected and plotted the same way 
as described in this particular experiment.

(continued)
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Procedure
Now assemble the apparatus so that you can place the light sensor at sev-

eral distances from the light source and then for each distance, take the read-
ing of the light sensor and wait until the instrument measures the intensity for 
a few seconds and the reading stabilizes, then store the data and continue 
changing the distance by 10 cm for every trial. At the end of the trials deter-
mine the average intensity at the given distance and then fill in the table below.

Distance (cm) Intensity (lumens) Distance (cm) Intensity (lumens)

10 50

20 60

30 70

40 80

 

Now plot the data on the graph below; connect the points with a best-fit 
curve, and then compare your obtained graph with your predictions.
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Reflections on the Results:

 

 

II. Relationship Between Light, Sound, and Gravity
The equation for the gravitational force between two masses M1 and M2 

separated by a distance d is given by

 F GM M dG = 1 2
2/  

where G is the universal gravitational constant 6.11 × 10−11 (N) (m2)/(kg2).
The equation can be modified so that the changes in the distance between 

two masses M1 and M2 can be recorded and the corresponding force F′ can be 
expressed in terms of F.

In the following table fill in the resulting value F′ of the gravitational 
attraction between the objects M1 and M2 at the given distance, in terms of F. 
(Fill in the missing blanks for F′.)

 F M M d» 1 2
2/  

M1 M2 d F′
1 1 1 F

2 1 1 2F

1 1 2 F/4

2 2 1

2 2 2

2 2 1/2

3 2 1

2 3 2

3 3 3

3 3 1/2

4 3 2

4 4 2

4 4 4

4 5 1/3

5 5 1/5

(continued)
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Plot the data in the following graph and draw the curve that connects the 
points as a best fit.

Gravitational Force F' vs Distance Between M1 and M2
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How does your graph of the gravitational force as a function of the dis-
tance between masses compare with those of Light Intensity vs distance, and 
Loudness vs distance?

The propagation of waves obeying the inverse-square dependence on the dis-
tance can also be demonstrated by a laboratory activity.

9.1  Radiation

At this point we shall introduce a topic that has loomed large throughout the text, 
but that we have not explicitly addressed despite having dealt with many of its prop-
erties, as we have explored those of waves.

Since we have been dealing with the way waves propagate from a source in this 
chapter, we can logically extend our discussion to what sources of light, sound, and 
other forms of energy do in general. We can begin with a definition of radiation as a 
way to generalize what we have explored so far in this chapter.

Radiation can be considered as the energy emitted from a source, and that travels 
through space or matter in the form of waves or high-speed particles. It should be 
pointed out that radiation is only one type of energy transfer; there is also conduc-
tion and convection as ways for energy to travel. However, the distinctive feature of 
radiation is that the way the energy is emitted is in all directions, as though it were 
emanating from a point.

9 Wave Propagation and Intensity Variations
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 1. Radiation by its types: electromagnetic (waves) and particle radiation.
 2. Radiation by its effect: ionizing and non-ionizing.

As with our wave classification there is a crossover between the divisions, 
namely the first group can display both types of the second, but the reverse is some-
what more complicated. In other words, electromagnetic as well as particle radia-
tion can both be either ionizing or non-ionizing. However, the distinction between 
waves and particles needs to allow for the difference in our perception of what 
particles are. There are components of electromagnetic radiation that behave like 
particles (photons), but they have properties that differ significantly from the par-
ticulate examples we encounter everyday.

As far as high-speed particles that are called particle radiation, they too can be 
ionizing or non-ionizing depending mainly on their speed and charge. Radioactivity 
(which incidentally also exhibits an inverse-square dependence on the distance 
from the source) is often described in terms of three types, as shown in Fig. 9.1:

 (a) Alpha (a helium nucleus)
 (b) Beta (fast-moving electrons)
 (c) Gamma (high-energy photons)

Alpha particles are generally slow moving and not very energetic since they can 
be stopped by thick paper, or even by soft tissue. Beta particles can penetrate further 
than Alpha, but they lose energy upon colliding with atoms and larger objects. They 
can be stopped by a thin sheet of Aluminum, and even by human skin, although they 
can be harmful if swallowed. Gamma radiation is usually called rays since they are 
very energetic, and unlike Alpha and Beta radiation, have no charge. This is a reason 
why they can penetrate thick materials and can be harmful to human exposure, but 
can be stopped by lead or concrete.

Fig. 9.1 The three types of radiation are illustrated as models of what they look like. In part (a) an 
Alpha particle is shown as a Helium nucleus, where the collective positive (+) charge is that of the 
protons, the neutrons are shown as (0) having no charge. In part (b) the beta particle is shown as a 
negatively (−) charged (electron) fast-moving one. In part (c) the Gamma ray is shown as a high- 
energy wave. The lengths of the dashed arrows are meant to illustrate the differences in speed, not 
to scale

Radiation
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We also need some clarification as to what the terms ionizing and non-ionizing 
stand for. According to our chemical models of molecular structure electrons are typi-
cally tightly bound to atoms through chemical bonding between molecules. This rep-
resents a case of chemical equilibrium where energy is mainly exchanged internally, 
although some is also given or taken from the environment. However, whenever an 
external source of energy radiates in such a way that the radiation has a certain amount 
of energy, it can disrupt the state of equilibrium that exists in matter. The following 
figure illustrates the case of ionization, when the chemical structure of matter is dis-
rupted, creating a situation where there is now radiation being emitted to the surround-
ing environment. In this rather simplified explanation, the idea is that ionization leads 
to an increase in chemical activity, which can result in damage to organisms through 
a variety of means, particularly through mutations in biological activity.

Non-ionizing radiation by contrast can still cause increased activity between 
molecular structures, but without enough energy to cause the stripping of electrons, 
which is essentially what ionization is all about.

Figure 9.2 represents the basic idea behind ionization, where the resulting 
increase in chemical activity leads to a subsequent increase in biological activity 
that often results in harmful mutations to organisms. In this regard, ionizing radia-
tion is to be avoided whenever one is exposed to either electromagnetic radiation, 
or any other type.

Fig. 9.2 A high-energy wave or a fast-moving particle impacts a molecule. In part (a) the wave is 
shown as a packet, and the particle is shown as oscillating in more than one dimension but moving 
along the dashed arrow. In part (b) the solid arrow represents the chemical bond between the 
atoms. If either the wave, or the particle possesses enough energy to break the bond, then ioniza-
tion occurs. In part (c) the result of the collision is an ion, where the single electron in the orbit is 
unstable since the nucleus has a different amount of charge
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Virtual Experiment
When light interacts with matter a number of different outcomes can be 
observed, depending on the energy of the light, which in turn depends on its 
frequency and wavelength, and the type of molecules the light interacts with.

Explore the various ways that light interacts with matter by using the PhEt 
simulation “Light and Molecules” available at

http://phet.colorado.edu/en/simulation/molecules-and-light
Run the simulation and explore the interaction of each type of radiation 

with a given molecule. Change the intensity of the radiation and observe what 
happens to the molecule, describing whether or not the chemical bonding is 
disrupted. Fill in the table below with your observations for each molecule.

Microwave Infrared Visible Light Ultraviolet 

CO 

N2 

O2 

CO2 

H2O 

NO2 

O3 

 

Since radiation is contained in all parts of the electromagnetic spectrum, we need 
to display in what parts of it the distinction between ionizing (harmful) and 
non-ionizing radiation can be found.

Figure 9.3 contains the region of the spectrum where the radiation changes from 
non-ionizing to ionizing. The boundary cannot be made sharper than somewhere in the 
ultraviolet region since there is uncertainty as to where exactly one ceases to deal with 
strictly non-ionizing radiation, and then encounters the harmful effects of ionization. 
One can see that the visible part of the spectrum contains both types of radiation; how-
ever, the transition has taken place by the time one encounters the ultraviolet region.

Conceptual Task
A cell phone’s SAR, or its Specific Absorption Rate, is a measure of the 
amount of radio frequency (RF) energy absorbed by the body when using the 
handset. All cell phones emit RF energy and the SAR varies by handset model.

Find your phone’s SAR rating (value) and determine whether it falls on the 
low or high emission range according to the government’s standards.

https://www.fcc.gov/encyclopedia/specific-absorption-rate-sar-cellular- 
telephones

http://phet.colorado.edu/en/simulation/molecules-and-light
https://www.fcc.gov/encyclopedia/specific-absorption-rate-sar-cellular-telephones
https://www.fcc.gov/encyclopedia/specific-absorption-rate-sar-cellular-telephones
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Fig. 9.3 The figure illustrates the region of the electromagnetic spectrum where the transition 
between non-ionizing and ionizing radiation has taken place

Exploratory Task
The following frequency ranges are used in telecommunications:

Radio frequency band (30 KHz–300 GHz); cellular mobile [(872–960) 
(1710–1875) (1920–2170)] MHz; microwaves (2200 MHz–60 GHz).

According to the following figure of the electromagnetic spectrum, the cell 
phone band is in the non-ionizing region. However, there is concern in some 
circles about the effects of cell tower and cell phone exposure to radiation.

 

(continued)

US Dept. of Labor-Occupational Safety and Health Administration
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• Have you ever read the fine print on the boxes containing new cell phones?
• If you have noticed, there is a specific warning about not keeping the 

devices closer to the body than an inch or so; why do you suppose that is?
• Whether one is texting or speaking on the phone, the basic operation is the 

reception of the signal from a cell tower, and the radiation back from the 
phone with the information contained. These signals, as all waves do, obey 
the inverse-square dependence of the signal strength on the distance from 
the source.

• Even if the exposure to radiation is in the non-ionizing region, whenever 
your device is far from a cell tower it needs to send more energy back, and 
so it will radiate more than if it were near one. Interestingly, whenever one 
is near a cell tower there is more radiation being received by the device 
since the distance is quite short.

• Do you think it is better to use cell phones in populated cities where there 
are lots of cell towers, or in rural areas where there will be few and the 
device may be very far from cell towers?

• When do you think you are exposed to more radiation, in urban centers or 
rural areas?

The last property of radiation we shall explore is its dependence on angle of 
incidence. As with distance, there is a change in the amount of radiation absorbed 
as one changes the angle that the rays or waves make with the surface where the 
energy is absorbed.

Exploratory Task
Determine the variation and dependence of the amount of light absorbed by a 
surface on the angle the light makes with it.

Use a light sensor or a light meter downloaded to your phone as an App to 
measure the light intensity on a chosen smooth surface. Make sure that the 
distance from the light source to the sensor remains constant for all 
measurements.

 

(continued)
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Fill in the data table below

Angle (°) Light Intensity (Lux)

 

• What will the graph of the relationship between Light Intensity and Angle 
of incidence look like?

• Reflect on your observations

The next task is a logical extension of the previous activity, and it shows the 
significance of the relationship between angle of incidence and amount of intensity 
of light deposited on the surface found above. In addition, the task provides a sum-
mary of the effects of both distance from the source, and angle of incidence on the 
surface, that determine how much light radiation is deposited on a surface.

What is the Cause of the Seasons on the Earth?
Among the most popular ideas investigated with students is their understanding 
of the reason for the seasons.

Question: what causes the seasons on the Earth?
Answer:
Background
The orbit of the Earth around the sun is basically circular, despite a small 

variation in distance between the closest point (perihelion), and the farthest 
one (aphelion) on the orbit. If your answer above was that the distance 
between the sun and the Earth is the reason for the seasons, this contradicts 
the fact that a circle has a constant radius; therefore, the distance from the 

(continued)

9 Wave Propagation and Intensity Variations



179

center does not change. Also, consider that during January the Earth is closest 
to the sun, and yet in the northern hemisphere we experience winter!

Correspondingly, during the summer the Earth is farthest from the sun, and 
yet we experience summer in the northern hemisphere. By now, you begin to 
sense that the answer does not depend on the distance, but on the angle that 
the solar radiation makes with the Earth’s surface. This activity demonstrates 
that property, and should convince those who think the distance is what makes 
a difference.

Constructing a circular orbit on the floor and indicating four points where 
a sphere that represents the Earth is placed, we can measure the amount of 
light radiation that a source of light in the center representing the sun can 
deposit on the surface of the Earth. The points are perihelion, aphelion, and 
the two equinoxes (points where the light intensity is the same). But wait a 
minute, how can we measure differences in light intensity if all these points 
are at the same distance from the sun?

The answer is that the Earth spins on an axis that is tilted approximately 23.5° 
to the normal to the plane where the sun and the planets move (the ecliptic). 
Therefore, the sphere that represents the Earth must be placed at all four points 
on the orbit, with its axis of rotation or spinning at a constant value.

 

The points 1 (Aphelion), 2 and 4 (Equinoxes), and 3 (Perihelion) are the 
positions where the sphere representing the Earth is placed, with the axis of 
rotation making a 23.5° angle with the vertical (dashed line). The placement 
of the light sensor (or an App such as Lux Camera for the iPhone) shown 
below is at a point on the Earth that corresponds to this angle.

(continued)
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Light Intensity

(Lux)

Point 1

(Aphelion)

Point 2

(Equinox)

Point 3

(Perihelion)

Point 4

(Equinox)

Fill in the Table below for the values of light intensity
What point shows the maximum intensity?

9.2  General Properties of Wave Spreading

As we have seen with light and sound, the decrease in intensity as a function of the 
distance from the source of the waves follows a specific formula, that of an inverse- 
square dependence on the distance. This property can now be explained in general 
terms for all wave phenomena, as well as for all energy dispersion.

As Fig. 9.4 shows the energy intensity will be deposited on an area section A at 
the surface of a sphere surrounding the source. As the distance beyond increases in 
terms of R the radius of the sphere, the intensity progressively decreases. The 
change is such that at the shown distances 2R, 3R, and 4R, the area sections where 
the intensity is deposited will be 4A, 9A, and 16A, respectively. This clearly shows 
that as the distance increases, the intensity decreases as a function of the distance 
squared.
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Fig. 9.4 The figure shows the spreading of the area where the energy falls as the distance from the 
source of the energy increases. If the origin is a point source (S) and the intensity of the energy is 
I, then at the surface of the sphere the energy intensity will be I/4π R2 where R is the radius of the 
sphere. On the surface of the sphere this energy will be deposited on area A. As the distance beyond 
the sphere increases, the intensity decreases as a function of the distance squared

General Properties of Wave Spreading
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    Chapter 10   
 Waves and Sensory Perception                     

          We have explored several properties of waves up to this point, particularly those of 
 light   and  sound   while emphasizing the physical characteristics displayed by such 
wave  phenomena  . In this chapter we shall deal with some of the physiological, and 
perhaps even psychological aspects of our daily  exposure   to waves; after all, 
throughout history humanity has attempted to understand waves by beginning at our 
level of  perception  , and then extrapolating to areas beyond our direct experience 
with the confi dence gained from familiar situations. 

 One of the features of our observations of natural  phenomena   is what we con-
sider to be  symmetry  . The  symmetry   of an object or a physical system is a property 
that remains unchanged under certain transformations or changes upon observation. 
It is a physical or  mathematical   feature of the system (observed or intrinsic) that is 
“preserved” under some change. There is some fascinating pre-historical evidence 
of the role of symmetry in the evolution of the human species. 

 Similarly to what other species do in dealing with tasks, humans have relied on 
the use of the hands for the production of tools, and as tools themselves. We can take 
as a starting point in our discussion of symmetry a pre-historic example. 
Archaeologists have determined that before a certain time  period  , which can only be 
ascertained based on radioactive dating to be roughly between 1.4 and 1.9 million 
years ago [ 1 ], there seemed to be no signifi cant preference for the use of either hand. 
We can use handedness by humans as a factor that relates to symmetry, in the sense 
that preferences for either right- or left-hand use show a departure from  ambidexter-
ity  , or the existence of a 50-50 tendency in the use of the hands. 



184

 Exploratory Task 
 Ideally a person should be ambidextrous, or able to accomplish tasks skill-
fully with both hands. However, in the case of writing we all show a tendency 
to prefer one hand over the other, although some can probably write equally 
well with either hand. 

 Determine your skill in completing a tracing task; use the time it takes to 
completely draw inside various shapes without touching the fi gure. If you 
touch it,  record   the time taken from the start, and then repeat the task. 

  Procedure  
 Use the following setup to draw a path inside each shape, fi rst with your 

preferred hand, and then with the other. Begin at S and move clockwise until 
you return to the starting  position  . While you draw, someone else will record 
the time it takes you to complete the task. Repeat by moving counterclock-
wise and determine if there is a difference. 

 Two different sheets of paper should be used (one for each direction), so as 
to avoid being infl uenced by previously erased attempts. 

      

         

(continued)
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    Fill in the table below

 Trial 
 Triangle 
(right hand) 

 Circle 
(right hand) 

 Square 
(right hand) 

 Triangle 
(left hand) 

 Circle 
(left hand) 

 Square 
(left hand) 

  Clockwise direction  
 1 
 2 
 3 
 Av. 
  Counterclockwise direction  
 1 
 2 
 3 
 Av. 

   Discuss the results in terms of the time difference in  completing   the tasks. 
Is there  symmetry   (similar times for task completion) between

    (A)    The left and the right hand?   
   (B)    The clockwise and the counterclockwise direction?    

  Is there a pattern for the times taken, as you repeat the tasks? 
   Extension    
 As an  application   to writing, perform a similar task available online at: 

  http://legacy.mos.org/sln/Leonardo/LeonardoRighttoLeft.html     

10 Waves and Sensory Perception
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      Application   to Sound 

 The concept of  symmetry   can also be applied to our perception of sound in various 
ways; a particularly simple task is to determine whether your hearing is symmetric 
in the sense of detecting  frequencies   by each ear. 

 To determine if both ears are equally  sensitive   to  frequency  , a task can be under-
taken where you can test each ear for the  maximum   audible frequency that can be 
heard. The task can be done by going online (  http://onlinetonegenerator.com/    ). 

 When at the website choose “hearing test” and generate the  signal   while cover-
ing one ear (or putting cotton inside it). Determine the  maximum   value of  frequency   
that is audible with each ear; fi ll in the table below (Table  10.1 ).

•     Are the mean values equivalent?  
•   Discuss any differences noticed.    

 The concept of  symmetry   can be traced back to Greek origins, expressed as their 
perception of  proportion   in many aspects of life.  Symmetry   evolved from an aes-
thetic concept to one heavily tied to functionality, as expressed by Roman architec-
ture and engineering. During the Renaissance it became predominantly used in the 
visual arts. 

 The most commonly found use of  symmetry   is in the use of left and right as part 
of the perception of geometric symmetry. There are other types of  symmetry   that we 
can explore:

    1.    Translational symmetry. It is used when one moves an object a  distance   without 
a change in orientation.   

   2.    Rotational  symmetry  . It consists of turning an object through an angle around an 
axis as a reference.   

   3.     Refl ection   symmetry. It is based on specular or regular  refl ection   at a  surface  , 
obeying the laws of refl ection that we have explored before.   

   4.     Inversion   symmetry. It is based on the  motion   of a point on a system of coordi-
nates, such as the Cartesian one ( x ,  y , and  z  axes). A point can be moved from + 
to − on the coordinates, with respect to the origin, or another  point  .    

  Table 10.1    Values of 
 maximum   audible  frequency   
for each ear  

 Trial  Left ear  Right ear 

 1 
 2 
 3 
 Mean 

10 Waves and Sensory Perception
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      Translational  Symmetry   

 Translational symmetry results in a pattern with  periodicity   (it repeats in the same 
interval of time). Figure  10.1  provides examples of this type of symmetry.

       Rotational Symmetry 

 A fi gure has a rotational symmetry if the following conditions are met:

    (a)    There is a point in it that the fi gure can be turned around a certain number of 
degrees and still look the same.   

   (b)    The fi gure appears to be unchanged even after it is rotated.   
   (c)    Its image, after a  rotation   of less than 360°, appears exactly the same as that of 

the original fi gure.     

 Figure  10.2  provides several examples of rotational  symmetry  .

        Refl ection    Symmetry   

 Refl ection symmetry is a type in which one half of the object is the mirror image of 
the other. A fi gure may have both horizontal and vertical lines of  refl ection  . 
Figure  10.3  shows examples of refl ection  symmetry  .

  Fig. 10.1    Three examples of translational  symmetry   are shown. In ( a ) a brick façade shows a 
repetitive pattern with one preferred direction. In ( b ) a checker or chessboard shows no preferred 
direction for the pattern. In ( c ) the pattern is more complex, and there are other types of  symmetry   
present, but one can choose a pattern among those that will exhibit translational  symmetry         

 

Refl ection Symmetry
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         Inversion    Symmetry   

 Inversion symmetry is in a sense a generalized view of  rotation  , being more accu-
rate than  refl ection  . It can be more challenging to determine due to the larger num-
ber of dimensions involved. In two dimensions, a point refl ection is the same as a 
rotation of 180°. In three dimensions, a point  refl ection   can be described as a 
180-degree rotation combined with refl ection across a plane perpendicular to the 
axis of  rotation  . 

  Fig. 10.2    Four examples of rotational  symmetry   are shown. In each case you can pick a point and 
see that the three conditions stated above are met. The exception of course is for the darts in ( a )       

  Fig. 10.3    Examples of  refl ection    symmetry  ; if it weren’t for the difference in shading between the 
two halves in ( a ) the fi gure would be completely symmetric upon refl ection along the  dashed line . 
The fi gure shows vertical  refl ection    symmetry  , but not horizontal. If we were to draw a horizontal 
line cutting the fi gure in half, there would be no symmetry. In ( b ) there is vertical as well as hori-
zontal  refl ection   symmetry for the fi gure, but not for the number. In part ( c ) there is both horizontal 
and vertical symmetry, no  matter   how we orient the fi gure       
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 Exploratory Task 
 The concept of  refl ection   symmetry can be applied to other situations besides look-
ing at fi gures. We can use an  extension   of the previous task where the skill in com-
pleting the fi gures was explored, to one where a mirror image of the fi gure can be 
used to determine how one’s skill in completing the task is affected by refl ection. 

 The following fi gures show the arrangement of the  experimental   setup. 
 The fi rst fi gure shows the arrangement using one of the shapes (the trian-

gle); the idea is to use the image of the shape by blocking the drawing of the 
shape itself. In this example a wooden block is used, but any object that prop-
erly blocks the drawn shape will suffi ce.

               

 The diffi culty one may experience in seeing the symmetry in Fig.  10.4  is due to 
the fact that a three dimensional effect is being shown on a two dimensional plane. 
The following fi gure is an attempt to explain this by taking a point on a coordinate, 
and then doing each part of the  inversion   symmetry separately.

(continued)
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  Fig. 10.4    An example of  inversion    symmetry  , showing that the  molecule   appears refl ected and 
inverted at the same time, with respect to the point O. Notice that a simple fl ipping of the fi gure 
alone (the top part of the fi gure appearing upside down) would not constitute  inversion    symmetry  , 
since the orientation alone would have changed, and there is no  refl ection   yet       

    The fi gure with the hand shows the proper view. Make sure that only the 
 refl ection   of the fi gure is visible to you, then repeat the tasks previously 
described. It is expected that the tasks will be more challenging and the times 
taken to complete the tasks will be much longer. One should only use the 
dominant hand (the one that you prefer to write with) to determine the number 
of trials needed to successfully complete the task (remember, to go around 
without touching the shape). 

 Fill in the table that follows (the number of rows may need to be modifi ed, 
depending on how many trials it takes to successfully complete the tasks).

 Clockwise  Counterclockwise 

 Trial  Triangle  Circle  Square  Trial  Triangle  Circle  Square 

 1  1 
 2  2 
 3  3 
 Av.  Av. 

•     Is there  symmetry   between  clockwise   and counterclockwise directions?  
•   Plot the time taken to successfully complete each fi gure, as a function of 

the number of trials needed.  
•   Are there patterns to the graphs of the data taken to complete the tasks?    

 We are only exploring the symmetry upon  refl ection   of the direction 
(clockwise vs counterclockwise) in this task. Further explorations are possible 
but should be left as  extensions   or additional projects to explore symmetry. 
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   Figure  10.5  shows in detail the  process  ; the shape represents the entire  molecule  . 
In part (a) the  refl ection   is shown with respect to the vertical axis, and in part (b) the 
 inversion   is shown with respect to the horizontal  axis  .

         Symmetry   in  Physics   

 There are a number of important  applications   of symmetry in physics, chemistry, 
and biology. One of the most interesting is a property called  chirality  . 

  Fig. 10.5    This fi gure is a detailed explanation of the  inversion   shown in Fig.  10.4 . The shape 
represents the entire  molecule  ; in part ( a ) the  refl ection   with respect to the vertical axis is shown, 
whereas in part ( b ) the fl ipping is shown with respect to the horizontal axis. The result of both 
operations is  inversion         

  Experimental   Task 

         

(continued)
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    Letters and words can have or lack  symmetry  ; in the enclosed fi gures, 
 refl ection   symmetry is exhibited by some letters but not by others. We can 
clearly see on the fi gure that X has refl ection symmetry but R does not. On the 
other fi gure we can see why the word AMBULANCE needs to be written 
backwards in front of emergency vehicles, so that  drivers   can see them on 
their mirrors. 

      

    Identify the letters in the fi gure above that possess the following types of 
 symmetry  :

•    Rotational  symmetry   ____  
•   Horizontal  refl ection   symmetry ____  
•   Vertical refl ection symmetry ____    
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  Fig. 10.6    Two examples of objects exhibiting  chirality  ; the fi rst one is exhibited by  nature   itself, 
the growth of a sea shelf, while the second (the  spring  ) is human-made       

  Chirality : The  symmetry   of an object determines whether or not it has chirality. 
A fi gure or an object is said to be  chiral  (to have  chirality ) if it is not identical to its 
mirror image or, to put it more precisely, if it cannot be mapped to its mirror image 
by rotations and translations alone. For example, a right shoe is different from a left 
shoe, and clockwise is different from counterclockwise. 

 A  molecule   is  achiral  (not chiral) when a combination of a  rotation   and a  refl ec-
tion   in a plane, perpendicular to the axis of  rotation  , results in the same  molecule  . It 
may lack some forms of symmetry, but it could have others (such as rotational). 
Figure  10.6  shows some examples, although we shall not deal with  chirality   in this 
text, other than to introduce it as an example of  symmetry   (or lack thereof) in  nature  .

   Symmetry has been linked to conservation laws through a fairly recent formula-
tion called Noether’s theorem, which states that any differentiable  symmetry   of the 
action of a physical system has a corresponding conservation law. Translational 
 symmetry   = conservation of linear  momentum   and  energy  , and rotational symmetry 
through a fi xed angle = conservation of angular momentum. 

 Geometrical  symmetry   has been observed for a long time, in terms of the shape 
of objects. A polygon (a shape with fl at or straight sides) has three or more sides. 
Polygons can be regular (all sides are equal), or irregular (unequal sides). Figure  10.7  
shows regular and irregular polygons.

   There is an interesting  application   of symmetrical polygons with a long history. 
Since the time of the Pythagoreans it has been known that the only regular polygons 
that can cover a  surface   without leaving any gaps are: the equilateral triangle, the 
square, and the regular or equilateral hexagon. 

 Figure  10.8  shows how the three regular polygons, the equilateral triangle, the 
square, and the regular hexagon can be used to fi ll out a  space   without leaving any 
gaps in between. The  construction   of tiles, textiles, and pottery designs show the 
effective use of such property. Of course, the use by bees of the last pattern in build-
ing a honeycomb is intriguing in itself.

   Combining other regular polygons and fi lling in the  spaces   between them leads 
to interesting patterns such as tiles. Combining pentagons and hexagons can form a 
slightly imperfect sphere, although these cannot cover a fl at  surface  . A great exam-
ple is that of a soccer ball, as shown in Fig.  10.9 .
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   The design of soccer balls has evolved from its very primitive stages to the mod-
ern aerodynamic examples seen today. Interestingly enough, there are some charac-
teristics of the  motion   of these balls through the air that have raised engineering 
questions, since some irregularities have been observed in their trajectories. It may 
be interesting to speculate to what extent the basic shape has an impact on this, as 
shown in Fig.  10.9 . 

 Another area where interesting  applications   of perceptual  features   leading to odd 
observations occur is in the case of  illusions  . An illusion can be defi ned as a  discrep-
ancy   between long-term memory and real-time data as the brain interacts with the 
environment. Illusions can be classifi ed into three major categories:

  Fig. 10.7    The fi gure shows both types of polygons. In part ( a ) the isosceles triangle, pentagon, 
and hexagon included are considered regular since their sides are all equal. In part ( b ) the right 
triangle, unequal pentagon, and star are considered irregular       

  Fig. 10.8    Part ( a ) shows the fi rst six polygons. Part ( b ) shows that the only ones that can fi ll a 
 space   without leaving any gaps are the equilateral triangle, the square, and the regular hexagon       
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  Fig. 10.10    Some examples of visual  illusions  . In reality,  the lines  in part ( a ) are all parallel, but 
the  perception   is that they are slanted due to the other shapes in the fi gure. In parts ( b ) and ( c )  the 
concentric circles  by defi nition do not intersect, but the perception is that they spiral inwardly in 
both cases, regardless of the background       

    1.     Physical   illusions  , which are the result of purely external physical  processes  .   
   2.     Physiological  illusions, which involve our sensory apparatus as it processes 

external information.   
   3.     Psychological  or  cognitive  illusions, which are the result of the internal process-

ing mechanisms within the brain.    

  Generally speaking, any  representation   of an object that exists in three dimen-
sions onto a two dimensional  surface   is in a sense an  illusion  . Figure  10.10  shows 
some examples of visual illusions.
    Figure  10.11  shows a particular type of  illusion  . When the collection of irregu-
lar but identical shapes is arranged on the left, the pattern can be interpreted as 
either a white grid made by irregular lines against a black background, or a col-
lection of identical “black squares.” The pattern is the same on the right, but 

  Fig. 10.9    A soccer ball does not have a perfectly round shape since it is made of both regular and 
irregular polygons, added together in the way it is manufactured. Notice that there is a fi ve sided 
( pentagon ) and a six-sided ( hexagon ) put together, so the result is that the sphere obtained by doing 
this is not perfectly round       
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instead the separations between the black squares or the  lines   of the white grid 
are straight. In the latter case one sees an additional feature of the pattern, dots 
in between.

   Another interesting  illusion   is that resulting from using an object called the 
 Necker cube  . We can see the illusion emerge by beginning with a two dimensional 
object, a regular hexagon. Figure  10.12  illustrates the  process   in detail.

   As Fig.  10.12  shows, if one begins with a regular hexagon and then adds a corner 
the resulting shape is a cube, whose depth can be perceived but not clearly deter-
mined. Adding a second corner completes the  illusion  , which is called the Necker 
cube. The illusion consists of the change in orientation of the cube where the front 
face repeatedly seems to come in and out of the  fi eld   of view. 

 Exploratory Task 
 Describe your observations of the following fi gure. 
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  Fig. 10.12    The  Necker cube   can be generated with a regular hexagon ( a ) and then adding a corner 
( b ); the result ( c ) is a cube whose depth can be sensed but not clearly determined. The beginning 
of the  illusion   depends on whether the corner is said to be either convex or concave (pointing in or 
out of the plane). Adding a second corner gives rise to the full illusion in ( d ), which is that the 
orientation of the cube alternates       

  Fig. 10.11    The situation described in the second picture is commonly referred to as the Hermann 
grid. It is the result of an  illusion   that arises from a transformation in the shape of the lines       
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        Reference 

    1.   McManus, I. C. (2002). Right Hand, Left Hand: The Origins of Asymmetry in Brains, Bodies, 
Atoms and Cultures. London, UK/Cambridge, MA: Weidenfeld and Nicolson/Harvard 
University Press     

 Exploratory Task 
 The “default” view in the stack of cubes is that the point O is at the origin of 
the coordinates, and the axes appear as coming out of the plane. Determine 
how long you can keep viewing the fi gure showing the stack of cubes so that 
the point O represents the bottom of the stack, and the axes appear to go into 
the  plane  . 
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Chapter 11
Forensic Applications

In this chapter, we shall explore a number of ways in which the properties exhibited 
by light and sound can be used in forensic investigations. We begin by recalling the 
various features that waves display, such as reflection, refraction, diffraction, 
polarization, and intensity variations.

This may require going back to previous chapters to review some of these ideas; 
in any case, the objective of the chapter is to provide a context for these tasks, so that 
they are more meaningful in their representation of actual criminal investigations.

The tasks are not arranged in any particular sequence or order, except categorizing 
them as applications of either the properties of light or those of sound, which 
incidentally are the same, but they require the use of different equipment.

 Applications to Sound

(I)
Use of a motion detector to determine the location and the shape of 
objects

Context
Imagine that a crime has been committed where the authorities suspect a safe 

taken from a mansion that could not be opened had to be buried by the thieves. 
You are given several locations to search for it, and you wish to determine where 
to excavate. Since you need to take into consideration the time and effort 
involved in the excavation, you want to have a good idea of where the safe 
would most likely be, by investigating the sites with ultrasound reflection.

The following activity illustrates how sound is used to detect objects either 
underground or underwater, by bouncing sound waves off the objects.

(continued)
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The Motion Detector used in this experiment emits short bursts of ultrasonic 
sound waves; these waves fill a cone-shaped area off the axis of the centerline 
of the beam. The Motion Detector allows one to measure how long it takes for 
the ultrasonic waves to travel a distance to an object and then back to the 
detector. Using this time and the speed of sound in air, the distance to the 
nearest object is determined. By reporting the distance to the closest object 
that produces a sufficiently strong echo, the motion detector can pick up 
objects in the cone of ultrasound. It is therefore extremely important to avoid 
placing any other objects near the cone of sound, so that the signals don’t 
confound the data.

   

The motion detector sends out an ultrasound cone of approximately 20°. 
The size of the area (the base of the cone) depends on the distance from the 
detector multiplied by this angle. Since the motion detector acts as a transducer 
(a device that both emits and receives energy) by functioning as a microphone 
and as a loudspeaker, there is a minimum distance from the detector that the 
investigated object should be placed.

The manufacturer of the detector states that this distance should be 
approximately 40 cm, to account for the existence of a “blind spot” where the 
signal emitted by the transducer operating as a loudspeaker stops, and the 
signal obtained by it operating as a microphone begins.

Sound can be used as a probe to measure the size and shape of objects in 
the atmosphere (in air) and in other substances such as water. The use of 
sound in water is generally called “sonar.” The fact that when a wave meets a 
boundary between two materials part of the wave is reflected and part is trans-
mitted, allows for the use of sound in diagnostic applications as seen in a 
previous chapter, as well as in other areas of research. Among the many uses 
of sound by scientists, archeologists, marine geologists, and oceanographers, 
employ it to investigate objects underwater. A signal is sent out and bounces 

(continued)
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back from a submerged surface. Scientists use the speed of sound in water and 
the time it takes for the signal to bounce back to calculate the depth of the 
object. A particular advantage in this case is the fact that the speed of sound 
in water is almost five times greater than in air.

In this activity we’ll use the reflection of sound with a motion detector to 
determine the size (volume) of an object; the measurements can then be 
compared with the actual dimensions of the object to test the accuracy of 
the method.

 

A motion detector is placed on a table facing down so that the ultrasound cone 
goes over the object (a wooden block) on the floor. One should begin collecting 
data before encountering the object and continue after having passed it.

The motion detector needs to be moved at a constant speed across the table 
(along the dashed black line) so that the span occupied by the object on the 
floor is covered in the amount of time chosen to collect the data.

The graphs obtained may look different, depending on how the reflected 
signal is interpreted by the motion detector. Either display will yield the 
particular distance from the flat lines (before and after bouncing off the 
object). In both cases one needs to subtract the depth or height of the signal 
from the flat line(s) that represent the floor, or reference level.

(continued)
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To determine the volume of a cube, each dimension is measured by placing 
the cube on each one of its three sides, and then collecting the data that 
represent the particular dimension (length, width, and height).

Note: To find the length, width, and height of each object subtract the 
distance to the object from the distance to the floor.

Object I

Distance to the floor

HeightTrial Length Width

(1)

(2)

(3)

Average

Object II

Trial Length Width Height

(1)

(2)

(continued)
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Trial Length Width Height

(3)

Average

Use the average values to fill in the following table:

Measurement Length Width Height Volume %error

Object (I) with sound

Object (I) actual size

Object (II) with sound

Object (II) actual size

%error
MeasuredVolume actual EstimatedVolume sound

Me
=

( ) ( )éë ùû 

aasuredVolume actual( )
´100

Reflections

 1. Which was your best result in parts (I) and (II) of the experiment? Why do 
you think it was better than your other result?

 2. In part (II) what object gave the best result in terms of the lowest % error?
 3. What are the main sources of error?

(II)
Use of a motion detector to determine the distance from objects and to 

describe their motion.
Motion detectors are commonly used in a variety of security systems. One 

of the most effective methods of describing an object’s motion is from graphs 
of position, velocity, and acceleration vs. time. From such a graphical repre-
sentation, it is possible to determine in what direction an object is going, how 
fast it is moving, how far it traveled, and whether it is speeding up or slowing 
down. In this experiment, you will use a Motion Detector to determine this 
information by plotting a real time graph of your motion as you move across 
the classroom. Let’s consider the following scenario.

Context [1]
(Copyright 2016 by AACE and the Education & Information Technology 

Digital Library (EdITLib), www.editlib.org, included here by permission)
Suppose an intruder accesses a secured area and your job is to investigate 

the evidence provided by two motion detectors that monitored the room in 
question. There are two entrances that are located perpendicular (at right 
angles) to each other and that are monitored by the detectors. The following 
figure illustrates the situation.

(continued)
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An intruder setting. There are two entrances E1 and E2, and the room is 
monitored by two motion detectors M1 and M2

 (a) Using the graph below determine which motion detector captured the 
motion of the intruder, the detector facing the entrance used, or the one 
perpendicular to it?
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Answer:

 

 (b) How did the intruder move, as shown by the graph of the recorded motion?
Procedure:
The Motion Detector measures the time it takes for a high frequency sound 

pulse to travel from the detector to an object and back. Using this round-trip 
time and the speed of sound, you can determine the position to the object.

(continued)
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Describe the following graph, and then match it with your own motion
(I)
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Description:

 

 

 

Motion Detector Interface

(continued)
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Open Logger Pro and go to File, then Open, and then choose Physics with 
Vernier: 01b Graph Matching (Draw your best motion in the figure below).
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(II) Now that you have experienced the effect of your own motion, describe 
once again the intruder case graph.

Description:
Open Logger Pro and go to File, then Open, and then choose Physics with 

Vernier: 01c Graph Matching (Draw your best motion in the figure below).
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Conclusions and Reflections: What have you learned as a result of the 
tasks where you relate your own motion to its description?

(III)
Use of a microphone to determine the frequency of sounds and other 

related properties
Context
Suppose a situation involving another safe, where the thieves actually suc-

ceeded in opening it at the site of the robbery. The safe has a computer lock 
similar to a telephone keypad. Each time a number on the pad is pushed, a 
specific tone is produced. Apparently someone other than the owner of the 
safe had access to the combination. At this time, the main suspect is the butler, 
and investigators found sophisticated sound-recording equipment in his apart-
ment. Upon searching his computer hard drive, they discovered files contain-
ing waveform patterns. The investigators believe that the butler recorded the 
sounds made by the safe’s keypad and used them to determine the combina-
tion of the lock.

The waveforms found in the suspect’s computer are included. In each case 
the wave frequency can be obtained to compare it with the pitch of the sounds 
produced by the safe as the respective sequence of numbers that opens it. 
Each waveform is plotted for 3/100 s (0.03 s), and we need to determine the 
number of cycles (waves) in this amount of time. Dividing 0.03 s by the num-
ber of cycles gives the period (T), and then f = 1/T gives the frequency in Hertz. 
The first three waveforms (a, b, c) are shown with the cycles identified as the 
pattern that is repeated by the uneven signals. The remaining ones are straight-
forward in their appearance so the number of cycles can be easily counted.

As an example, the first one (a) is
0.03 s/3 cycles, and so T = 0.01 s, and f = 1/0.01 s = 100 Hertz (Hz)

 

(continued)
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Waveform T (s) F (Hz)

(b)

(c)

(d)

(e)

(f)

The investigators determined that the safe could be opened by the sequence formed 
by the following notes: C5, C4, and C6. Does this pattern appear in the suspect’s 
waveforms?

 Applications to Light

(I) Human Reaction Time (Visual)
Dropping a ruler to determine human reaction time

Human reaction time is how long it takes the eyes to tell the brain that the 
ruler is falling and how long it takes the brain to tell the fingers to catch it. We 
can use the distance the ruler falls before one catches it to figure out reaction 
time. We use a kinematic equation (a solution to Newton’s second law of 
motion) to find the height

 d d V t gt= + +0 0
21 2/  (11.1)

In this formula, d equals the distance the ruler falls, d0 is an initial height, V0 
is the initial velocity of the ruler, g equals the local gravitational acceleration 
(9.8 m/s2), and t is the time the ruler falls.

(continued)
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Since the ruler is initially dropped from rest (V0 = 0, and d0 = 0 for simplicity), 
Eq. (11.1) reduces to

 d gt= ½ 2

 (11.2)

Solving for t = 2d g/
Collect data for several trials of dropping the ruler and determining the 

distance it falls, and then use the average distance to find the reaction time 
from the equation.

How does the answer compare to the average human reaction time of 
250 ms?

(II)
Context
Another piece of evidence against the butler is being used; it consists of a 

record of light intensity during the time the safe was opened. The detector 
records the light as a variable pattern (a sine curve) during the entire monitor-
ing process. The butler in his defense submits data from his cell phone that he 
claims was accidentally left on a table in a room with fluorescent lights with 
his light sensor app running, and the time during which the signal was 
recorded shows it as a constant signal. He argues that he could not have been 
at the room where the signal was captured as a variable pattern. Is he telling 
the truth?

The variable pattern of fluorescent lights can be determined by using a 
light sensor whose sensitivity is comparable to that of the human eye. It is 
generally known that the eye will perceive continuous or fluid motion if the 
frequency with which static frames (such as in cartoons and films) exceeds a 
range of values. However, it is agreed that most people will not see any flick-
ering past 100 Hz or frames per second. Since the human eye cannot distin-
guish between flashes that occur more than about 50 times a second, the light 
appears to be on all the time.

Investigating fluorescent lights’ flickering effect and vision
We make use of a reverse procedure to the one where the eye begins to see 

a flickering effect of light and then gradually sees the light as a continuous 
pattern. We shall use a light sensor to determine the emergence of a variable 
pattern of light intensity from a fluorescent light source, as we change the 
sampling rate of the sensor, beginning with values where the light is recorded 
as a constant value. The collection rate of the sensor is changed and light is 
collected, until a variable pattern appears, and then with it we determine the 
frequency of the oscillations that give rise to the illusion that the light is 
continuous.

In this part you will point the light sensor at a single fluorescent light and 
record its intensity for a very short period of time. The resulting plot of inten-
sity versus time is interesting because it shows that fluorescent lights do not 

(continued)
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stay on continuously but rather flicker off and on very rapidly. Since the human 
eye cannot distinguish between flashes that occur more than about 50 times a 
second, the light appears to be on all the time. The data you collect will be 
used to determine the period and frequency at which the light flickers.

We use a light sensor connected to an interface and a computer running a 
program such as Vernier’s Logger Pro.

 1. When the sensor is connected to the interface and that to a computer a 
default screen appears with a graph, a table, and a reading box.

 2. From the Data Collection icon 

 

choose duration 0.05 s, and sampling rate 20 samples per second.

 

 3. Hold the light sensor near a fluorescent light.
 4. Collect data of light intensity versus time for the light source.
 5. Fill in the table below for each of the values of the sampling rate and the 

sensor reading.

Trial Sampling rate Light intensity (Lux)

1 20

2 60

3 100

4 200

5 400

6 800

7 1000

(continued)
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 6. For what sampling rate did the light intensity begin to look like a broken 
line?

 7. For the last sampling rate value, extend the range of the vertical axis so 
that the amplitude of the signal is clearly visible, and from the taskbar 
menu choose:

Analyze, then Curve Fit, then Sine
 8. From the wave pattern determine the period from the wave form as before, 

and then the frequency

Frequency (f) =
Reflections
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Chapter 12
Technological Applications

 Applications to Light

One of the traditional challenges in representing reality that humans have encoun-
tered is in the reproduction of objects that exist in three dimensions onto a two 
dimensional surface. Distortions are inevitable, and the attempts have always been 
to faithfully copy the main features of objects. Since the time of the early Egyptian 
civilizations, human figures appeared facing sideways on the depictions of daily 
activity, as well as ritualistic representations.

The difficulty experienced by those individuals attempting to copy a real scene 
onto a flat surface was eventually resolved during the renaissance. The invention of 
perspective painting enabled artists to copy reality to a previously unprecedented 
degree of accuracy. This involved a clever trick of geometrical representation.

Imagine the tricks that can be employed in deliberately including features in 
drawings that defy logic, in the sense that they appear to display features that we 
would never experience in the world of three dimensions that is our everyday physi-
cal setting. Figure 12.1 shows two examples of impossible objects that appear pos-
sible as represented initially; however, upon further inspection one can see that they 
are impossible, given our reference of everyday experience.

The interesting aspect of Fig. 12.1 is that despite being impossible to construct in 
reality, they appear as they do by a trick that enables the representation to go from 
two to three dimensions. There are other ways to accomplish a representation in 
three dimensions from a figure that is constructed in two dimensions. Figure 12.2 
illustrates two ways in which this can be done.

Another way to determine depth is to use the method of parallax, where a shift in 
the angle of view between two objects that are closer to the observer is larger than 
the shift between them if they are farther away. This is illustrated in Fig. 12.3.

The solution to the problem of representing objects in three dimensions on a two 
dimensional surface that ancient artists had faced was to come from an idea devel-
oped by the Arabs and introduced to European artists in the art of painting. 
Figures 12.4 and 12.5 demonstrate its use, which is based on a perspective based on 
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Fig. 12.1 Two examples 
of impossible figures are 
shown. In both cases, 
initially they appear 
correctly represented, until 
further inspection reveals 
that they cannot possibly 
be built/constructed to look 
as they appear

Fig. 12.2 The figure shows two ways to create the illusion of depth, or to convey a three dimen-
sional view from a two dimensional representation. In (a) two objects of different size are placed 
next to each other, the lower one seems farther away than the top one. In (b) two objects of identi-
cal size are placed next to each other, but one overlaps the other, thus making the partially blocked 
object to seem farther away
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what the eye sees by projecting the reflected rays of light from objects onto the eye 
as a cone with its base representing the size of the object.

Figure 12.4 illustrates the concept of centric rays that was invented by the Arab 
thinker Al Hazen [1]. He envisioned rays coming from objects and converging onto 
the eye as being of two types: (1) those that came in at an angle, or obliquely and 
not entering the eye since they bounced off the sides of the visual cone repeatedly, 
and (2) those called centric by virtue of entering the cone straight or along the center 
and successfully converging on the eye.

This idea proved to be enormously important in allowing artists during the 
renaissance to create the illusion of depth in paintings, as demonstrated in Fig. 12.5.

Figure 12.5 shows how one can project a flat surface using another one but 
slightly distorted, to create a sense of depth. Part (b) shows how one can extend the 
projection to a point, which enables the creation of a multitude of such points to 
reproduce an entire image. The advantage is that the image now appears to have 

Fig. 12.3 The phenomenon of parallax consists of the perception of the distance D that an object 
is from the observer, as depending on the angle θ that is formed by the separation d between the 
two chess pieces shown. In (a) the separation d is different; the shorter d is, the farther away they 
seem from the observer. In (b) as the separation d between the two pieces changes, the angle θ also 
changes, and so based on that observation the two objects can be determined to be farther (larger 
D) or closer (smaller D) to the observer
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depth, beginning with an object in two dimensions that has none. This process 
constitutes the basis of perspective geometry.

The creation of images in three dimensions from those on a surface using proper-
ties of waves is based on reflection and the interference of transverse waves. The 
technique is generally known as interferometry, and it can be used with a variety of 
light sources. In the production of holograms a laser beam is sent from a source and 
encounters a beam splitter (e.g., a half mirror) that sends it in two different  directions. 

Fig. 12.4 The diagram shows the basic idea behind the visual cone. The eye is imagined to per-
ceive the size of objects as a cone surrounding them, where the base would change in size depend-
ing on their distance from the eye. The dashed lines represent the rays that enter the base of the 
cone but strike the sides of the cone and bounce off without reaching the eye. The solid lines rep-
resent the centric rays, which successfully reach the eye

A B

(a) (b)

D

F

E’

C’

A’ B’

D’

F’

O’
B1B2

E

C

Fig. 12.5 The square face ABCD can be projected by the use of the distorted CDEF. This creates 
the illusion of depth on the plane of the paper or surface on which it is drawn
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These new beams reflect from mirrors, one beam is made to bounce off the object 
to be projected onto a photographic film, and converge on the film along with the 
other beam. The arrangement is illustrated in Fig. 12.6.

An interferometer is a device that enables a very accurate determination of distance, 
and it has a wide variety of applications. Figure 12.7 shows a schematic where a 
laser beam is made to split, the two beams then reflect from two mirrors, and then 
recombine to converge on a detector.

The function of the interferometer needs to be explained in detail, since it is the 
phase difference between interfering waves that is the central feature in its widespread 
utility and popularity as a device to measure distances very accurately.

The discussion about how waves combine in Chap. 6 in terms of constructive 
and destructive interference can also be carried out in terms of another property of 
waves called their phase. This property was deliberately left out of those listed in 
Chap. 2, and it can be appropriately introduced now.

We can refer to Fig. 1.4a to illustrate mathematically what Hooke’s law enables 
us to do. When describing the behavior of a spring with a mass attached at its end, 
and then set in motion, the force described by Hooke’s Law is the net or total force 
acting on the spring. When we apply Newton’s Second Law (F = ma, along the x 
direction), the sum of the forces is expressed as

 S F kx max x.= - =  (12.1)

where Fx is the force, k is the spring constant, x is the amount the spring is stretched 
or compressed, m is the mass attached to the spring, and ax is the acceleration along 
the x-axis.

Fig. 12.6 The arrangement shows how a hologram is produced. The light beam is depicted both 
as a ray and as a wave; the beam sent from the laser is split by (S) into the object beam (OB) and 
the reference beam (RB). Each beam reflects twice from mirrors in this case; RB then strikes a 
photographic film (F), while OB bounces off the object and then strikes the film. These last two 
beams are shown highlighted in the diagram, as they converge to produce the three dimensional 
image of the object on the film
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Rearranging Eq. (12.1) we get

 ma kxx + = 0  (12.2)

Equation (12.2) is known as a differential equation, whose solutions are algebraic 
equations. In this case the acceleration ax is the second derivative of x with respect 
to time. You can understand this relationship by extrapolating from the solution to 
an algebraic equation (which is a numerical one). In other words, a numerical 
answer is a solution to an algebraic equation, whereas an algebraic equation is a 
solution to a differential equation.

The sine and cosine functions are commonly used as solutions to Eq. (12.2) that 
represent the sinusoidal pattern described by the motion of the spring. These can be 
expressed as either

Fig. 12.7 An interferometer consists of a laser beam split into two beams; each beam reflects off 
a mirror, these are then recombined at the splitter again and converge on a detector. The phase dif-
ference between the reflected beams gives a measure of the distance d that either mirror has shifted 
in its position. All beams are depicted as both rays and waves, along with their directions. The 
splitter serves both functions, to refract and split the original beam, and then to recombine the 
reflected beams
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x t A f t x t A f t( ) = +( ) ( ) = +( )cos sin2 2p F p For

 
(12.3)

where A is the amplitude, f is the frequency, 2π expresses the fact that both functions 
sine and cosine repeat themselves after a complete cycle, and Φ is the phase.

The solution that we wish to use is x(t) = A cos (2πf t + Φ) since it satisfies the 
following conditions:

When t = 0, the spring is stretched to the maximum value of x (A the amplitude), 
and its velocity is 0.

These two trigonometric functions have a constant phase difference of 90°, as 
illustrated in Fig. 12.8.

Fig. 12.8 The diagram shows that the trigonometric functions sine and cosine have a constant 
phase difference of 90° or π/2. If t = 0 (at the origin), sine begins with zero amplitude, but cosine is 
at its maximum. The phase difference of 45° corresponds to 1/8 of a wavelength, 90° to ¼ of a 
wavelength, and so on. The shaded region represents a complete cycle for the cosine function, but 
not for the sine, since it lags by that constant phase difference

Exploratory Tasks
(I) Can you keep track of the values for the cosine function, given those for 
the sine function? Use Fig. 12.8 to fill in the table

Position Sine Cosine

1 45

2 90

3 180

4 270

5 360

(continued)
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(II) Following the time evolution of sine and cosine functions
Use the online simulation “Fourier: Making Waves” available at https://

phet.colorado.edu/en/simulation/legacy/fourier
Make sure the default frame looks like the following figure

 

Minimize the Harmonics graph so that the simulation looks like this

 

Press the Play button and observe how the sine curve moves to the right; 
then change the Graph control function to cosine (cos) and repeat. What do 
you notice on the vertical axis with each function as they begin to move?

12 Technological Applications
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In addition, sine and cosine functions have an additive property that enables us 
to obtain more complex patterns that in turn represent many properties of waves, 
including constructive and destructive interference.

A particularly important technique for studying properties of waves is known as 
Fourier synthesis (when waves are added to construct a complex pattern), or as 
Fourier analysis (when a complex wave is decomposed into its corresponding 
parts). In both cases we can see that using just sine and cosine functions results into 
an immense variety of wave applications.

Exploratory Task
Using the same PhEt simulation as in the previous task, choose “Square” from 
the preset functions button. The screen will now look like the following 
figure, and the additional information is included to show how the individual 
sine waves combine to produce the complex pattern that is a square wave. 
The top graph shows the amplitudes of each of the harmonics (recall that 
these are multiples of the fundamental frequency), in this case multiples/frac-
tions of A1 the amplitude of the fundamental. The middle graph shows how 
the harmonics add up as waves, and the bottom graph shows the net or total 
result (the Sum of all these waves).

 

Click the Sound button and analyze the patterns in the Harmonics and the 
Sum graphs; Move the rider on the Harmonics bar from 11 to 10 and listen to 
the tone.

(continued)
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Figure 12.9 shows the result of two waves in phase; the resulting or total 
amplitude will be greater than that of either wave alone.

Interferometers will use the shift in the patterns that results when waves 
interfere, depending on whether or not there is a phase difference between them. 
As we saw in Chap. 7, the interference of waves results in alternating bright and dark 
regions on a screen. Figure 12.10 illustrates the pattern produced by the interference 
between two waves.

When the beam that has been split and later reconstructed from the reflected 
beams is analyzed in the detector, the pattern of fringes produced is compared to the 
original one, which has been represented by Fig. 12.10. Several likely outcomes are 
illustrated in Fig. 12.11.

The figure shows the details of what different outcomes would look like. In the 
top diagram of Part (a) the corresponding incident and reflected waves are in phase, 
or they differ by a whole wavelength; in this case the lack of a shift in the fringe 
pattern is used as evidence that the mirror has not moved. The middle and bottom 
diagrams in both parts (a) and (b) illustrate that shifts in the fringe patterns are an 
indication that the mirror has moved.

There have been several historically important experiments where the results of 
a lack of a shift in the fringe pattern (the Michelson Morley experiment), or the 
evident shift (the recent evidence used by the LIGO scientific collaboration), have 
led to very important discoveries. In the case of the Michelson Morley experiment, 
the constancy of the speed of light was experimentally established, in addition to the 
refutation of the idea of the existence of the ether (a medium for electromagnetic 
waves to propagate through).

Fig. 12.9 Illustrating the additive property of waves. The waves shown have different amplitudes, 
but since they are in phase they reinforce one another, resulting in a combined wave with amplitude 
that is greater than the individual ones

 (1) What happens to the tone as the number of harmonics is reduced from 
11 to 1?

 (2) What happens to the patterns of both the Sum and the Harmonics graphs 
as the rider is moved from 11 to 1?
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Fig. 12.10 The illustration 
is meant to represent the 
regions of constructive 
(dark bands) and 
destructive (light bands) 
interference produced by 
two waves

Fig. 12.11 The diagrams are meant to illustrate three outcomes. Part (a) shows the patterns pro-
duced by a mirror where the incident and reflected waves are either in phase or out of phase by 
different amounts. Part (b) shows the accompanying interference patterns. If they are in phase the 
mirror will not have moved; however, if they are out of phase the mirror must have shifted either 
by an amount d1 or d2

The very recent announcement of the discovery of gravitational waves [2] also 
rests upon evidence provided by the observation of a shift in the fringe pattern of 
signals. In this case, test masses were used instead of mirrors to determine the gravi-
tational force between them. The advanced LIGO detector made use of a modified 
Michelson interferometer.
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 Applications to Sound

One of the interesting applications to sound has its basis on the phenomenon of 
acoustic levitation, which is the use of sound to balance the pull of gravity on a 
mass, or its weight. This has been accomplished by creating a focus point in space 
using standing waves. Recall that a standing wave results whenever a single wave 
interacts with itself, or two or more waves interact with each other. The result is a 
set of alternating regions of maximum and minimum constructive interference.

In our discussion of standing waves produced by air vibrations there were alter-
native descriptions of the nodes and antinodes that constitute the maxima and 
 minima, depending on whether we used the air displacements or the pressure 
variations.

If we look at Fig. 5.3b in detail we can point out the specific ways in which the 
air displacements and pressure variations are related.

Figure 12.6 is just Fig. 5.3b reused to illustrate the relationship between air dis-
placements and pressure variations.

As Fig. 12.6 illustrates, the antinodes at the end of the air vibrations inside a tube 
that is open at both ends represent regions where the air is displaced the maximum. 
At this point we need to remember that what causes the air vibrations in the first 
place is the exertion of a force that is transmitted to the air as pressure. Consequently, 
if we use pressure variations instead, the antinodes correspond to regions of minimum 
air pressure, that is, atmospheric pressure.

At the same time, everywhere inside the tube, the nodes represent regions of mini-
mum air displacement or maximum air pressure.

This is what has been used to develop acoustic levitation applications. A source 
of sound such as a loudspeaker creates a sound that is reflected off a smooth surface 
across from it, or two loudspeakers create sounds opposite each other. In the first 
instance, the reflection of the sound creates a standing wave in the space between 
the loudspeaker and the reflecting surface, whereas in the second case the standing 
wave is produced by the interactions between the two oppositely sent sounds.

By locating the regions of maximum air pressure in between, and furthermore by 
finding a focus, or point where the energy transmitted is the greatest, small objects 
can be placed there and made to levitate. That is the basic idea behind acoustic 
levitation, as has been recently demonstrated in a number of ways.

Exploratory Task
Use Fig. 12.11 to answer the following:

If the wavelength of a laser beam is 632.8 nm, remember that 
1 nm = 1.0 × 10−9 m, and the fringe shift on the right is determined to be in the 
middle and bottom parts ¼ λ and ½ λ, respectively, what are the correspond-
ing distances that the mirror will have shifted?
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Conceptual Task
View the video on acoustic levitation at

http://www.youtube.com/watch?v=odJxJRAxdFU
After finishing the video answer the following:

• Why do you suppose they use four speakers instead of two, which could 
also create a focus in two dimensions?

• Where are the objects suspended in the standing wave produced by the 
four speakers?

• How many different materials did you observe being levitated?

Discuss three different ways that you can imagine acoustic levitation being 
used for.

Quantitative Tasks
 1. What is the range of the size of the objects levitated in the video (in mm)?
 2. Where are the objects located in a standing wave in two dimensions?
 3. Draw your answer to question 3
 4. If we use the size of the largest object levitated, according to your diagram 

is this distance the wavelength?
 5. If we take the speed of sound to be 340 m/s and the frequency of 40 kHz 

they used, what is the wavelength?
 6. How does the wavelength from question 5 compare to the size of the larg-

est object levitated?
 7. Explain your result in question 6.
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